LIFE EXPECTANCY MODELING USING MODIFIED SPATIAL AUTOREGRESSIVE MODEL

H. Yasin, B. Warsito, A. Hakim, Rahmasari Nur Azizah
{"title":"LIFE EXPECTANCY MODELING USING MODIFIED SPATIAL AUTOREGRESSIVE MODEL","authors":"H. Yasin, B. Warsito, A. Hakim, Rahmasari Nur Azizah","doi":"10.14710/medstat.15.1.72-82","DOIUrl":null,"url":null,"abstract":"The presence of outliers will affect the parameter estimation results and model accuracy. It also occurs in the spatial regression model, especially the Spatial Autoregressive (SAR) model. Spatial Autoregressive (SAR) is a regression model where spatial effects are attached to the dependent variable. Removing outliers in the analysis will eliminate the necessary information. Therefore, the solution offered is to modify the SAR model, especially by giving special treatment to observations that have potentially become outliers. This study develops to modeling the life expectancy data in Central Java Province using a modified spatial autoregressive model with the Mean-Shift Outlier Model (MSOM) approach. Outliers are detected using the MSOM method. Then the result is used as the basis for modifying the SAR model. This modification, in principle, will reduce or increase the average of the observed data indicated as outliers. The results show that the modified model can improve the model accuracy compared to the original SAR model. It can be proved by the increased coefficient of determination and decreasing the Akaike Information Criterion (AIC) value of the modified model. In addition, the modified model can improve the skewness and kurtosis values of the residuals getting closer to the Normal distribution.","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/medstat.15.1.72-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The presence of outliers will affect the parameter estimation results and model accuracy. It also occurs in the spatial regression model, especially the Spatial Autoregressive (SAR) model. Spatial Autoregressive (SAR) is a regression model where spatial effects are attached to the dependent variable. Removing outliers in the analysis will eliminate the necessary information. Therefore, the solution offered is to modify the SAR model, especially by giving special treatment to observations that have potentially become outliers. This study develops to modeling the life expectancy data in Central Java Province using a modified spatial autoregressive model with the Mean-Shift Outlier Model (MSOM) approach. Outliers are detected using the MSOM method. Then the result is used as the basis for modifying the SAR model. This modification, in principle, will reduce or increase the average of the observed data indicated as outliers. The results show that the modified model can improve the model accuracy compared to the original SAR model. It can be proved by the increased coefficient of determination and decreasing the Akaike Information Criterion (AIC) value of the modified model. In addition, the modified model can improve the skewness and kurtosis values of the residuals getting closer to the Normal distribution.
基于改进空间自回归模型的预期寿命建模
异常值的存在将影响参数估计结果和模型精度。它也出现在空间回归模型中,特别是空间自回归(SAR)模型中。空间自回归(SAR)是一种将空间效应附加到因变量上的回归模型。删除分析中的异常值将消除必要的信息。因此,提供的解决方案是修改SAR模型,特别是对可能成为异常值的观测值进行特殊处理。本研究采用改进的空间自回归模型和均值偏移异常值模型(MSOM)方法对中爪哇省的预期寿命数据进行建模。使用MSOM方法检测异常值。然后将所得结果作为SAR模型修正的依据。原则上,这种修改将减少或增加被指示为异常值的观测数据的平均值。结果表明,与原始SAR模型相比,改进后的模型可以提高模型精度。这可以通过增加决定系数和降低修正模型的Akaike信息准则(AIC)值来证明。此外,改进的模型可以改善残差的偏度和峰度值,使其更接近正态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信