On a strongly damped semilinear wave equation with time-varying source and singular dissipation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yi Yang, Z. Fang
{"title":"On a strongly damped semilinear wave equation with time-varying source and singular dissipation","authors":"Yi Yang, Z. Fang","doi":"10.1515/anona-2022-0267","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with the global well-posedness and blow-up phenomena for a strongly damped semilinear wave equation with time-varying source and singular dissipative terms under the null Dirichlet boundary condition. On the basis of cut-off technique, multiplier method, contraction mapping principle, and the modified potential well method, we establish the local well-posedness and obtain the threshold between the existence and nonexistence of the global solution (including the critical case). Meanwhile, with the aid of modified differential inequality technique, the blow-up result of the solutions with arbitrarily positive initial energy and the lifespan of the blow-up solutions are derived.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0267","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract This paper deals with the global well-posedness and blow-up phenomena for a strongly damped semilinear wave equation with time-varying source and singular dissipative terms under the null Dirichlet boundary condition. On the basis of cut-off technique, multiplier method, contraction mapping principle, and the modified potential well method, we establish the local well-posedness and obtain the threshold between the existence and nonexistence of the global solution (including the critical case). Meanwhile, with the aid of modified differential inequality technique, the blow-up result of the solutions with arbitrarily positive initial energy and the lifespan of the blow-up solutions are derived.
具有时变震源和奇异耗散的强阻尼半线性波动方程
摘要本文研究了具有时变源和奇异耗散项的强阻尼双线性波动方程在零Dirichlet边界条件下的全局适定性和爆破现象。在截断技术、乘法器方法、收缩映射原理和改进势阱方法的基础上,我们建立了局部适定性,并得到了全局解(包括临界情况)存在与不存在之间的阈值。同时,借助于改进的微分不等式技术,导出了具有任意正初始能量的解的爆破结果和爆破解的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信