{"title":"On a strongly damped semilinear wave equation with time-varying source and singular dissipation","authors":"Yi Yang, Z. Fang","doi":"10.1515/anona-2022-0267","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with the global well-posedness and blow-up phenomena for a strongly damped semilinear wave equation with time-varying source and singular dissipative terms under the null Dirichlet boundary condition. On the basis of cut-off technique, multiplier method, contraction mapping principle, and the modified potential well method, we establish the local well-posedness and obtain the threshold between the existence and nonexistence of the global solution (including the critical case). Meanwhile, with the aid of modified differential inequality technique, the blow-up result of the solutions with arbitrarily positive initial energy and the lifespan of the blow-up solutions are derived.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0267","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract This paper deals with the global well-posedness and blow-up phenomena for a strongly damped semilinear wave equation with time-varying source and singular dissipative terms under the null Dirichlet boundary condition. On the basis of cut-off technique, multiplier method, contraction mapping principle, and the modified potential well method, we establish the local well-posedness and obtain the threshold between the existence and nonexistence of the global solution (including the critical case). Meanwhile, with the aid of modified differential inequality technique, the blow-up result of the solutions with arbitrarily positive initial energy and the lifespan of the blow-up solutions are derived.