{"title":"Transient Optical Simulation by Coupling Elastic Multibody Systems, Finite Elements, and Ray Tracing","authors":"L. Hahn, Fabian Matter, P. Eberhard","doi":"10.1051/jeos/2023006","DOIUrl":null,"url":null,"abstract":"Transient dynamical-thermoelastic-optical system simulation is an important expansion of classical ray tracing through rigid, resting lenses because the operating performance of high-precision optical systems can be influenced by dynamical excitations or thermal gradients. In this paper an approach for an integrated optical system simulation using the coupling of elastic multibody system simulations, thermoelastic finite element analysis and gradient-index ray tracing is presented. Transient mechanical rigid body motions and elastic deformations, thermally induced refraction index changes, and thermal elastic deformations can be considered simultaneously in the ray tracing using the presented method. The calculation of the dynamical and thermal disturbances, the data transfer and coupling, and the gradient index ray tracing method are introduced. Finally, the approach is applied on a transient triplet lens optical system and some investigation results are shown.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023006","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Transient dynamical-thermoelastic-optical system simulation is an important expansion of classical ray tracing through rigid, resting lenses because the operating performance of high-precision optical systems can be influenced by dynamical excitations or thermal gradients. In this paper an approach for an integrated optical system simulation using the coupling of elastic multibody system simulations, thermoelastic finite element analysis and gradient-index ray tracing is presented. Transient mechanical rigid body motions and elastic deformations, thermally induced refraction index changes, and thermal elastic deformations can be considered simultaneously in the ray tracing using the presented method. The calculation of the dynamical and thermal disturbances, the data transfer and coupling, and the gradient index ray tracing method are introduced. Finally, the approach is applied on a transient triplet lens optical system and some investigation results are shown.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.