Mechanical Properties of Wheat Grains at Compression

IF 1.3 Q2 AGRICULTURE, MULTIDISCIPLINARY
Ľ. Kubík, M. Božiková, V. Kažimírová
{"title":"Mechanical Properties of Wheat Grains at Compression","authors":"Ľ. Kubík, M. Božiková, V. Kažimírová","doi":"10.2478/ata-2021-0033","DOIUrl":null,"url":null,"abstract":"Abstract Hook’s law for evaluation of the modulus of elasticity of wheat grains and its general behaviour under compressive loads were studied. Whole specimens were subjected to compressive loading between metal parallel plates. The mechanical properties of grains were determined in terms of average failure strengths of grain bran and whole grain; deformation; and modulus of elasticity. The mechanical properties of very dry grains of the winter wheat Triticum aestivum L. with the moisture content of 10.3% were studied. The failure strength of grain bran was 4.43 MPa at the deformation of 10.7%, and the failure strength of whole grains was 4.88 MPa at the deformation of 13.5%. The modulus of elasticity of grains was 43.67 MPa. The apparent energy density at bran failure strength was 0.261 MJ·m−3, and 0.470 MJ·m−3 on the level of grain failure strength of the whole grain. The bran border structure of central inner part of grains was studied using microscope digital sections of longitudinal cuts of the grains using the image computer processing method. The area proportion of starch and pericarp of the border parts of grains was studied to describe the border texture of central sections of grains.","PeriodicalId":43089,"journal":{"name":"Acta Technologica Agriculturae","volume":"24 1","pages":"202 - 208"},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Technologica Agriculturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ata-2021-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Hook’s law for evaluation of the modulus of elasticity of wheat grains and its general behaviour under compressive loads were studied. Whole specimens were subjected to compressive loading between metal parallel plates. The mechanical properties of grains were determined in terms of average failure strengths of grain bran and whole grain; deformation; and modulus of elasticity. The mechanical properties of very dry grains of the winter wheat Triticum aestivum L. with the moisture content of 10.3% were studied. The failure strength of grain bran was 4.43 MPa at the deformation of 10.7%, and the failure strength of whole grains was 4.88 MPa at the deformation of 13.5%. The modulus of elasticity of grains was 43.67 MPa. The apparent energy density at bran failure strength was 0.261 MJ·m−3, and 0.470 MJ·m−3 on the level of grain failure strength of the whole grain. The bran border structure of central inner part of grains was studied using microscope digital sections of longitudinal cuts of the grains using the image computer processing method. The area proportion of starch and pericarp of the border parts of grains was studied to describe the border texture of central sections of grains.
小麦籽粒受压时的力学特性
摘要研究了小麦颗粒弹性模量的胡克定律及其在压缩载荷下的一般行为。整个试样在金属平行板之间承受压缩载荷。谷物的机械性能是根据谷糠和全谷物的平均破坏强度来确定的;变形;以及弹性模量。研究了水分含量为10.3%的冬小麦极干籽粒的力学性能。谷糠在变形10.7%时的破坏强度为4.43MPa,全谷物在变形13.5%时的断裂强度为4.88MPa,谷物的弹性模量为43.67MPa。麸皮破坏强度下的表观能量密度为0.261MJ·m−3,在全谷物破坏强度水平上为0.470MJ·m–3。利用图像计算机处理方法,利用谷物纵向切口的显微数字切片,研究了谷物中心内部的麸皮边界结构。研究了谷物边缘部分淀粉和果皮的面积比例,以描述谷物中心部分的边缘纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Technologica Agriculturae
Acta Technologica Agriculturae AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
2.50
自引率
28.60%
发文量
32
审稿时长
18 weeks
期刊介绍: Acta Technologica Agriculturae is an international scientific double-blind peer reviewed journal focused on agricultural engineering. The journal is multidisciplinary and publishes original research and review papers in engineering, agricultural and biological sciences, and materials science. Aims and Scope Areas of interest include but are not limited to: agricultural and biosystems engineering; machines and mechanization of agricultural production; information and electrical technologies; agro-product and food processing engineering; physical, chemical and biological changes in the soil caused by tillage and field traffic, soil working machinery and terramechanics; renewable energy sources and bioenergy; rural buildings; related issues from applied physics and chemistry, ecology, economy and energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信