Space-time correlations of passive scalar in Kraichnan model

IF 3.2 3区 工程技术 Q2 MECHANICS
Ping-Fan Yang , Liubin Pan , Guowei He
{"title":"Space-time correlations of passive scalar in Kraichnan model","authors":"Ping-Fan Yang ,&nbsp;Liubin Pan ,&nbsp;Guowei He","doi":"10.1016/j.taml.2023.100470","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the two-point, two-time (space-time) correlation of passive scalar <span><math><mrow><mi>R</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span> in the Kraichnan model under the assumption of homogeneity and isotropy. Using the fine-gird PDF method, we find that <span><math><mrow><mi>R</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span> satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion. Its solution can be expressed in terms of the two-point, one time correlation of passive scalar, i.e., <span><math><mrow><mi>R</mi><mo>(</mo><mi>r</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span>. Moreover, the decorrelation of <span><math><mrow><mover><mi>R</mi><mo>^</mo></mover><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, which is the Fourier transform of <span><math><mrow><mi>R</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span>, is determined by <span><math><mrow><mover><mi>R</mi><mo>^</mo></mover><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> and a diffusion kernal.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000417","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the two-point, two-time (space-time) correlation of passive scalar R(r,τ) in the Kraichnan model under the assumption of homogeneity and isotropy. Using the fine-gird PDF method, we find that R(r,τ) satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion. Its solution can be expressed in terms of the two-point, one time correlation of passive scalar, i.e., R(r,0). Moreover, the decorrelation of R^(k,τ), which is the Fourier transform of R(r,τ), is determined by R^(k,0) and a diffusion kernal.

Kraichnan模型中被动标量的时空相关
在均匀性和各向同性假设下,考虑Kraichnan模型中被动标量R(R,τ)的两点、两时(时空)相关性。利用精细网格PDF方法,我们发现R(R,τ)满足由速度方差和分子扩散决定的恒定扩散系数扩散方程。其解可以用被动标量的两点一次相关表示,即R(R,0)。此外,R^(k,τ)的去相关,即R(R,τ)的傅里叶变换,由R^(k,0)和扩散核决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信