Deep Imputation on Large-Scale Drug Discovery Data

Benedict W J Irwin, T. Whitehead, Scott Rowland, Samar Y. Mahmoud, G. Conduit, M. Segall
{"title":"Deep Imputation on Large-Scale Drug Discovery Data","authors":"Benedict W J Irwin, T. Whitehead, Scott Rowland, Samar Y. Mahmoud, G. Conduit, M. Segall","doi":"10.22541/AU.161111205.55340339/V2","DOIUrl":null,"url":null,"abstract":"More accurate predictions of the biological properties of chemical\ncompounds would guide the selection and design of new compounds in drug\ndiscovery and help to address the enormous cost and low success-rate of\npharmaceutical R&D. However this domain presents a significant\nchallenge for AI methods due to the sparsity of compound data and the\nnoise inherent in results from biological experiments. In this paper, we\ndemonstrate how data imputation using deep learning provides substantial\nimprovements over quantitative structure-activity relationship (QSAR)\nmachine learning models that are widely applied in drug discovery. We\npresent the largest-to-date successful application of deep-learning\nimputation to datasets which are comparable in size to the corporate\ndata repository of a pharmaceutical company (678,994 compounds by 1166\nendpoints). We demonstrate this improvement for three areas of practical\napplication linked to distinct use cases; i) target activity data\ncompiled from a range of drug discovery projects, ii) a high value and\nheterogeneous dataset covering complex absorption, distribution,\nmetabolism and elimination properties and, iii) high throughput\nscreening data, testing the algorithm’s limits on early-stage noisy and\nvery sparse data. Achieving median coefficients of determination,\nR, of 0.69, 0.36 and 0.43 respectively across these\napplications, the deep learning imputation method offers an unambiguous\nimprovement over random forest QSAR methods, which achieve median\nR values of 0.28, 0.19 and 0.23 respectively. We also\ndemonstrate that robust estimates of the uncertainties in the predicted\nvalues correlate strongly with the accuracies in prediction, enabling\ngreater confidence in decision-making based on the imputed values.","PeriodicalId":72253,"journal":{"name":"Applied AI letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied AI letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22541/AU.161111205.55340339/V2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

More accurate predictions of the biological properties of chemical compounds would guide the selection and design of new compounds in drug discovery and help to address the enormous cost and low success-rate of pharmaceutical R&D. However this domain presents a significant challenge for AI methods due to the sparsity of compound data and the noise inherent in results from biological experiments. In this paper, we demonstrate how data imputation using deep learning provides substantial improvements over quantitative structure-activity relationship (QSAR) machine learning models that are widely applied in drug discovery. We present the largest-to-date successful application of deep-learning imputation to datasets which are comparable in size to the corporate data repository of a pharmaceutical company (678,994 compounds by 1166 endpoints). We demonstrate this improvement for three areas of practical application linked to distinct use cases; i) target activity data compiled from a range of drug discovery projects, ii) a high value and heterogeneous dataset covering complex absorption, distribution, metabolism and elimination properties and, iii) high throughput screening data, testing the algorithm’s limits on early-stage noisy and very sparse data. Achieving median coefficients of determination, R, of 0.69, 0.36 and 0.43 respectively across these applications, the deep learning imputation method offers an unambiguous improvement over random forest QSAR methods, which achieve median R values of 0.28, 0.19 and 0.23 respectively. We also demonstrate that robust estimates of the uncertainties in the predicted values correlate strongly with the accuracies in prediction, enabling greater confidence in decision-making based on the imputed values.
大规模药物发现数据的深度归算
对化学化合物的生物学性质进行更准确的预测将指导药物发现中新化合物的选择和设计,并有助于解决药物研发的巨大成本和低成功率问题。然而,由于复合数据的稀疏性和生物实验结果固有的噪声,该领域对人工智能方法提出了重大挑战。在本文中,我们展示了使用深度学习的数据插补如何对广泛应用于药物发现的定量构效关系(QSAR)机器学习模型提供实质性改进。我们展示了迄今为止最大规模的深度学习计算在数据集上的成功应用,这些数据集的大小与制药公司的企业数据库相当(678994种化合物,1166个端点)。我们针对与不同用例相关的实践应用程序的三个领域展示了这种改进;i) 从一系列药物发现项目中汇编的靶标活性数据,ii)涵盖复杂吸收、分布、代谢和消除特性的高值异构数据集,以及iii)高通量筛选数据,测试算法对早期噪声和非常稀疏数据的限制。深度学习插补方法在这些应用中分别实现了0.69、0.36和0.43的中值决定系数R,与随机森林QSAR方法相比,该方法提供了一个明显的改进,后者的中值R值分别为0.28、0.19和0.23。我们还证明,对预测值中不确定性的稳健估计与预测的准确性密切相关,从而增强了基于估算值的决策的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信