Intelligent personal assistant for personal computers using long short-term memory-based verbalizer

IF 0.8 Q4 ROBOTICS
Iwin Thanakumar Joseph Swamidason, Sravanthy Tatiparthi, Karunakaran Velswamy, S. Velliangiri
{"title":"Intelligent personal assistant for personal computers using long short-term memory-based verbalizer","authors":"Iwin Thanakumar Joseph Swamidason, Sravanthy Tatiparthi, Karunakaran Velswamy, S. Velliangiri","doi":"10.1108/ijius-02-2022-0012","DOIUrl":null,"url":null,"abstract":"PurposeAn intelligent personal assistant for personal computers (PCs) is a vital application for the current generation. The current computer personal assistant services checking frameworks are not proficient at removing significant data from PCs and long-range informal communication information.Design/methodology/approachThe proposed verbalizers use long short-term memory to classify the user task and give proper guidelines to the users. The outcomes show that the proposed method determinedly handles heterogeneous information and improves precision. The main advantage of long short-term memory is that handle the long-term dependencies in the input data.FindingsThe proposed model gives the 22% mean absolute error. The proposed method reduces mean square error than support vector machine (SVM), convolutional neural network (CNN), multilayer perceptron (MLP) and K-nearest neighbors (KNN).Originality/valueThis paper fulfills the necessity of intelligent personal assistant for PCs using verbalizer.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-02-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeAn intelligent personal assistant for personal computers (PCs) is a vital application for the current generation. The current computer personal assistant services checking frameworks are not proficient at removing significant data from PCs and long-range informal communication information.Design/methodology/approachThe proposed verbalizers use long short-term memory to classify the user task and give proper guidelines to the users. The outcomes show that the proposed method determinedly handles heterogeneous information and improves precision. The main advantage of long short-term memory is that handle the long-term dependencies in the input data.FindingsThe proposed model gives the 22% mean absolute error. The proposed method reduces mean square error than support vector machine (SVM), convolutional neural network (CNN), multilayer perceptron (MLP) and K-nearest neighbors (KNN).Originality/valueThis paper fulfills the necessity of intelligent personal assistant for PCs using verbalizer.
基于长短期记忆的个人电脑智能个人助理
目的个人电脑的智能个人助理是当前这代人的重要应用。目前的计算机个人助理服务检查框架不擅长从pc机中删除重要数据和远程非正式通信信息。设计/方法/方法建议的语言表达器使用长短期记忆来对用户任务进行分类,并为用户提供适当的指导。结果表明,该方法能有效地处理异构信息,提高了精度。长短期记忆的主要优点是可以处理输入数据中的长期依赖关系。所提出的模型给出了22%的平均绝对误差。与支持向量机(SVM)、卷积神经网络(CNN)、多层感知器(MLP)和k近邻(KNN)相比,该方法减小了均方误差。本文利用verbalizer实现了pc智能个人助理的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信