On simple submodules and C-rings

IF 1.2 Q2 MATHEMATICS, APPLIED
Shaymaa E. Sarhan, M. M. Abed
{"title":"On simple submodules and C-rings","authors":"Shaymaa E. Sarhan, M. M. Abed","doi":"10.1080/09720529.2022.2083682","DOIUrl":null,"url":null,"abstract":"Abstract In this paper; we will study the relationship between simple submodules of M and the C-ring. A ring R is called C-ring if every torsion module M over R has simple submodules. We investigated that if M is a torsion module over a semisimple ring; so, R is C-ring. Also, we study C-ring when R is Noetherian and T(M) = M such that any direct sum of modules with (SIP) has (SSP) implies that R is C- ring. We proved that if M is a torsion module and M = W + W′, this means R is C-ring where W and W′ are direct sum of M.","PeriodicalId":46563,"journal":{"name":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","volume":"25 1","pages":"2747 - 2751"},"PeriodicalIF":1.2000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09720529.2022.2083682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper; we will study the relationship between simple submodules of M and the C-ring. A ring R is called C-ring if every torsion module M over R has simple submodules. We investigated that if M is a torsion module over a semisimple ring; so, R is C-ring. Also, we study C-ring when R is Noetherian and T(M) = M such that any direct sum of modules with (SIP) has (SSP) implies that R is C- ring. We proved that if M is a torsion module and M = W + W′, this means R is C-ring where W and W′ are direct sum of M.
在简单子模和c环上
摘要在本文中;我们将研究M的简单子模与C环之间的关系。如果R上的每个扭模M都有简单的子模,则环R称为C-环。我们研究了如果M是半单环上的扭转模;所以,R是C形环。此外,我们还研究了当R是诺瑟环且T(M)=M时的C环,使得具有(SIP)的模的任何直和都具有(SSP)意味着R是C环。我们证明了如果M是一个扭模,M=W+W′,这意味着R是C环,其中W和W′是M的直和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
21.40%
发文量
126
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信