Pyrolysis of Waste Polyolefin’s and E-component to Produce Renewable Green Fuel (RGF) Over CdCO3

IF 1.8 4区 材料科学 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
M. Singh, Sudesh Kumar
{"title":"Pyrolysis of Waste Polyolefin’s and E-component to Produce Renewable Green Fuel (RGF) Over CdCO3","authors":"M. Singh, Sudesh Kumar","doi":"10.1680/jgrma.21.00024","DOIUrl":null,"url":null,"abstract":"The interest and relevance of the present paper is in the current waste plastics valorization scenario. The rapid depletion of fossil sources carbon as crude oil and their ever-increasing costs has led to an intensive search for alternative fuels. The renewable green fuel (RGF) or alternative fuel was obtained from waste low and high-density polyethylene (LD-PE, HD-PE) or polyolefin’s and computer-body through pyrolysis process using a CdCO3 from 23 °C to 400 °C. Five types of hydrocarbons were observed through 2D GCxGC/TOFMS, such as 7.621 % paraffin’s, 53.66 % branched / cyclic hydrocarbons, 14.83 % aromatics, 0.37 % phenanthrenes, and some unclassified compounds were 27.11 %. The research octane number of RGF was 88.29. The bromine number of RGF is 34.03 %. RGF was suitable for diesel engines and diesel furnaces without any upgrading. During the first, second and third pyrolysis experiments, 98 g, 95 g and 100 g (wt %) waste granules with 2 g, 5 g and 0 g (wt %) CdCO3 into RGFs were 85 %, 89 % and 80 % collected; uncondensed gases were 14.22 %, 10.15 % and 19.52 % collected; the residue were 0.78 %, 0.85 % and 0.48 % collected.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jgrma.21.00024","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The interest and relevance of the present paper is in the current waste plastics valorization scenario. The rapid depletion of fossil sources carbon as crude oil and their ever-increasing costs has led to an intensive search for alternative fuels. The renewable green fuel (RGF) or alternative fuel was obtained from waste low and high-density polyethylene (LD-PE, HD-PE) or polyolefin’s and computer-body through pyrolysis process using a CdCO3 from 23 °C to 400 °C. Five types of hydrocarbons were observed through 2D GCxGC/TOFMS, such as 7.621 % paraffin’s, 53.66 % branched / cyclic hydrocarbons, 14.83 % aromatics, 0.37 % phenanthrenes, and some unclassified compounds were 27.11 %. The research octane number of RGF was 88.29. The bromine number of RGF is 34.03 %. RGF was suitable for diesel engines and diesel furnaces without any upgrading. During the first, second and third pyrolysis experiments, 98 g, 95 g and 100 g (wt %) waste granules with 2 g, 5 g and 0 g (wt %) CdCO3 into RGFs were 85 %, 89 % and 80 % collected; uncondensed gases were 14.22 %, 10.15 % and 19.52 % collected; the residue were 0.78 %, 0.85 % and 0.48 % collected.
废聚烯烃和e组分热解制备可再生绿色燃料(RGF)的研究
本论文的兴趣和相关性是在当前的废塑料增值方案。原油等化石碳资源的迅速枯竭及其成本的不断上升,促使人们对替代燃料进行了密集的探索。以废旧低高密度聚乙烯(LD-PE、HD-PE)或聚烯烃为原料,利用CdCO3在23℃~ 400℃的温度下热解,制备可再生绿色燃料(RGF)或替代燃料。通过二维GCxGC/TOFMS检测到5类烃类,其中石蜡占7.621%,支环烃占53.66%,芳烃占14.83%,菲占0.37%,部分未分类化合物占27.11%。RGF的研究辛烷值为88.29。RGF的溴值为34.03%。RGF适用于柴油机和柴油机炉,无需升级改造。在第一次、第二次和第三次热解实验中,将含有2 g、5 g和0 g (wt %) CdCO3的98 g、95 g和100 g (wt %)废颗粒分别收集到85%、89%和80%的RGFs中;未冷凝气体的回收率分别为14.22%、10.15%和19.52%;残留分别为0.78%、0.85%和0.48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Materials
Green Materials Environmental Science-Pollution
CiteScore
3.50
自引率
15.80%
发文量
24
期刊介绍: The focus of Green Materials relates to polymers and materials, with an emphasis on reducing the use of hazardous substances in the design, manufacture and application of products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信