A mass-conserved tumor invasion system with quasi-variational degenerate diffusion

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. Ito
{"title":"A mass-conserved tumor invasion system with quasi-variational degenerate diffusion","authors":"A. Ito","doi":"10.1142/s0219530521500159","DOIUrl":null,"url":null,"abstract":"This paper deals with a nonlinear system (S) composed of three PDEs and one ODE below: [Formula: see text] The system (S) was proposed as one of the mathematical models which describe tumor invasion phenomena with chemotaxis effects. The most important and interesting point is that the diffusion coefficient of tumor cells, denoted by [Formula: see text], is influenced by both nonlocal effect of a chemical attractive substance, denoted by [Formula: see text], and the local one of extracellular matrix, denoted by [Formula: see text]. From this point, the first PDE in (S) contains a nonlinear cross diffusion. Actually, this mathematical setting gives an inner product of a suitable real Hilbert space, which governs the dynamics of the density of tumor cells [Formula: see text], a quasi-variational structure. Hence, the first purpose in this paper is to make it clear what this real Hilbert space is. After this, we show the existence of strong time local solutions to the initial-boundary problems associated with (S) when the space dimension is [Formula: see text] by applying the general theory of evolution inclusions on real Hilbert spaces with quasi-variational structures. Moreover, for the case [Formula: see text] we succeed in constructing a strong time global solution.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a nonlinear system (S) composed of three PDEs and one ODE below: [Formula: see text] The system (S) was proposed as one of the mathematical models which describe tumor invasion phenomena with chemotaxis effects. The most important and interesting point is that the diffusion coefficient of tumor cells, denoted by [Formula: see text], is influenced by both nonlocal effect of a chemical attractive substance, denoted by [Formula: see text], and the local one of extracellular matrix, denoted by [Formula: see text]. From this point, the first PDE in (S) contains a nonlinear cross diffusion. Actually, this mathematical setting gives an inner product of a suitable real Hilbert space, which governs the dynamics of the density of tumor cells [Formula: see text], a quasi-variational structure. Hence, the first purpose in this paper is to make it clear what this real Hilbert space is. After this, we show the existence of strong time local solutions to the initial-boundary problems associated with (S) when the space dimension is [Formula: see text] by applying the general theory of evolution inclusions on real Hilbert spaces with quasi-variational structures. Moreover, for the case [Formula: see text] we succeed in constructing a strong time global solution.
具有拟变分退化扩散的质量守恒肿瘤侵袭系统
本文讨论由三个偏微分方程和一个偏微分方程组成的非线性系统(S):[公式:见文]该系统(S)被提出作为描述具有趋化作用的肿瘤侵袭现象的数学模型之一。最重要和有趣的一点是,肿瘤细胞的扩散系数(用[公式:见文]表示)受到化学吸引物质(用[公式:见文]表示)的非局部效应和细胞外基质(用[公式:见文]表示)的局部效应的影响。从这一点来看,(S)中的第一个偏微分方程包含一个非线性交叉扩散。实际上,这个数学设置给出了一个合适的实希尔伯特空间的内积,它控制着肿瘤细胞密度的动态[公式:见文本],一个准变分结构。因此,本文的第一个目的是弄清楚这个实希尔伯特空间是什么。在此之后,我们通过在具有拟变分结构的实数Hilbert空间上应用广义演化包涵理论,证明了当空间维数为[公式:见文]时与(S)相关的初始边界问题的强时间局部解的存在性。此外,对于这种情况[公式:见文本],我们成功地构建了一个强时间全局解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信