2D Features-based Detector and Descriptor Selection System for Hierarchical Recognition of Industrial Parts

Ibon Merino, J. Azpiazu, Anthony Remazeilles, B. Sierra
{"title":"2D Features-based Detector and Descriptor Selection System for Hierarchical Recognition of Industrial Parts","authors":"Ibon Merino, J. Azpiazu, Anthony Remazeilles, B. Sierra","doi":"10.5121/ijaia.2019.10601","DOIUrl":null,"url":null,"abstract":"Detection and description of keypoints from an image is a well-studied problem in Computer Vision. Some methods like SIFT, SURF or ORB are computationally really efficient. This paper proposes a solution for a particular case study on object recognition of industrial parts based on hierarchical classification. Reducing the number of instances leads to better performance, indeed, that is what the use of the hierarchical \nclassification is looking for. We demonstrate that this method performs better than using just one method like ORB, SIFT or FREAK, despite being fairly slower.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"10 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2019.10601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Detection and description of keypoints from an image is a well-studied problem in Computer Vision. Some methods like SIFT, SURF or ORB are computationally really efficient. This paper proposes a solution for a particular case study on object recognition of industrial parts based on hierarchical classification. Reducing the number of instances leads to better performance, indeed, that is what the use of the hierarchical classification is looking for. We demonstrate that this method performs better than using just one method like ORB, SIFT or FREAK, despite being fairly slower.
基于二维特征的工业零件层次识别检测器和描述符选择系统
图像中关键点的检测和描述是计算机视觉中一个被广泛研究的问题。像SIFT、SURF或ORB这样的方法在计算上非常高效。针对工业零件的目标识别问题,提出了一种基于层次分类的解决方案。减少实例的数量会带来更好的性能,这正是层次分类的目的所在。我们证明了这种方法比只使用ORB、SIFT或FREAK这样的方法性能更好,尽管速度相当慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信