On one solution of a periodic boundary value problem for a hyperbolic equations

IF 0.7 Q2 MATHEMATICS
T. Tokmagambetova, N. Orumbayeva
{"title":"On one solution of a periodic boundary value problem for a hyperbolic equations","authors":"T. Tokmagambetova, N. Orumbayeva","doi":"10.31489/2023m1/141-155","DOIUrl":null,"url":null,"abstract":"In a rectangular domain, we consider a boundary value problem periodic in one variable for a system of partial differential equations of hyperbolic type. Introducing a new unknown function, this problem is reduced to an equivalent boundary value problem for an ordinary differential equation with an integral condition. Based on the parametrization method, new approaches to finding an approximate solution to an equivalent problem are proposed and its convergence is proved. This made it possible to establish conditions for the existence of a unique solution of a semiperiodic boundary value problem for a system of second-order hyperbolic equations.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m1/141-155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a rectangular domain, we consider a boundary value problem periodic in one variable for a system of partial differential equations of hyperbolic type. Introducing a new unknown function, this problem is reduced to an equivalent boundary value problem for an ordinary differential equation with an integral condition. Based on the parametrization method, new approaches to finding an approximate solution to an equivalent problem are proposed and its convergence is proved. This made it possible to establish conditions for the existence of a unique solution of a semiperiodic boundary value problem for a system of second-order hyperbolic equations.
关于双曲型方程周期边值问题的一个解
在矩形域中,我们考虑双曲型偏微分方程组的一个单变量周期边值问题。引入一个新的未知函数,将此问题简化为具有积分条件的常微分方程的等价边值问题。在参数化方法的基础上,提出了求等价问题近似解的新方法,并证明了其收敛性。这使得建立二阶双曲方程组半周期边值问题唯一解存在的条件成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信