GEODYNAMICS

IF 1 Q3 GEOCHEMISTRY & GEOPHYSICS
O. Kendzera, Y. Semenova
{"title":"GEODYNAMICS","authors":"O. Kendzera, Y. Semenova","doi":"10.23939/jgd2018.01.091","DOIUrl":null,"url":null,"abstract":"Purpose. The paper substantiates the need for building seismic zoning maps of Kyiv in the physical parameters of ground motions: peak ground accelerations (PGA), peak ground velocities (PGV) or peak ground displacements (PGD), which are the basis for the effective use of methods for calculating seismic loads on buildings, structures and individual responsible constructions. An intermediate stage in the creation of such maps is the development of a map of seismic zoning of the territory of Kyiv in terms of relative integral estimates of spectral increments in seismic soil oscillations, arising from the influence of the peculiarities of the distribution of physical parameters of soils. The intermediate map gives the distribution over the city territory of a quantitative assessment of the influence of the spectral characteristics of the soil on the seismic hazard, expressed in systemic physical quantities. Methodology. An analytical-empirical approach to mapping the seismic hazard of territories is applied. Within the territory of Kyiv, using the method of seismic-geological analogies, areas (taxonomic zones) were identified, where the seismic effect can differ significantly both in physical parameters: displacement, speed, acceleration – and the ability of soil strata to significantly affect the spectral characteristics of the soil. Results. For each taxonomic zone, a computational seismic-geological model with inelastic deformation parameters has been built, which makes it possible to take into account the occurrence of nonlinear effects under significant seismic influences. Equivalent linear modeling was used to calculate the frequency response of seismic-geological soil models for each taxonomic zone. The averaged frequency response for the ground conditions of the territory of Kyiv was calculated. A map of the distribution of the deviation of the integral amplification of seismic oscillations from the average value for the territory of Kyiv was built. The integral spectral amplification is the area of the subspectral function. A dynamic analysis of the propagation of seismic oscillations in seismic-geological models is carried out and the influence of the upper sedimentary layer on the value of the peak ground acceleration PGA on the free surface is illustrated. Originality. For the first time within the territory of Kyiv, areas (taxonomic zones) have been identified, where the response of the soil to the seismic effect will differ. A map of the distribution of the deviation of the integral amplification of seismic oscillations by soils from the average value for the territory of Kyiv was constructed. Practical significance. The map of seismic zoning of Kyiv in amplitude terms of soil oscillations is proposed to be used when applying the spectral method for calculating an emergency combination of loads, taking into account seismic effects, to determine the value of the calculated relative ground accelerations of the construction site under study.","PeriodicalId":46263,"journal":{"name":"Geodynamics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/jgd2018.01.091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose. The paper substantiates the need for building seismic zoning maps of Kyiv in the physical parameters of ground motions: peak ground accelerations (PGA), peak ground velocities (PGV) or peak ground displacements (PGD), which are the basis for the effective use of methods for calculating seismic loads on buildings, structures and individual responsible constructions. An intermediate stage in the creation of such maps is the development of a map of seismic zoning of the territory of Kyiv in terms of relative integral estimates of spectral increments in seismic soil oscillations, arising from the influence of the peculiarities of the distribution of physical parameters of soils. The intermediate map gives the distribution over the city territory of a quantitative assessment of the influence of the spectral characteristics of the soil on the seismic hazard, expressed in systemic physical quantities. Methodology. An analytical-empirical approach to mapping the seismic hazard of territories is applied. Within the territory of Kyiv, using the method of seismic-geological analogies, areas (taxonomic zones) were identified, where the seismic effect can differ significantly both in physical parameters: displacement, speed, acceleration – and the ability of soil strata to significantly affect the spectral characteristics of the soil. Results. For each taxonomic zone, a computational seismic-geological model with inelastic deformation parameters has been built, which makes it possible to take into account the occurrence of nonlinear effects under significant seismic influences. Equivalent linear modeling was used to calculate the frequency response of seismic-geological soil models for each taxonomic zone. The averaged frequency response for the ground conditions of the territory of Kyiv was calculated. A map of the distribution of the deviation of the integral amplification of seismic oscillations from the average value for the territory of Kyiv was built. The integral spectral amplification is the area of the subspectral function. A dynamic analysis of the propagation of seismic oscillations in seismic-geological models is carried out and the influence of the upper sedimentary layer on the value of the peak ground acceleration PGA on the free surface is illustrated. Originality. For the first time within the territory of Kyiv, areas (taxonomic zones) have been identified, where the response of the soil to the seismic effect will differ. A map of the distribution of the deviation of the integral amplification of seismic oscillations by soils from the average value for the territory of Kyiv was constructed. Practical significance. The map of seismic zoning of Kyiv in amplitude terms of soil oscillations is proposed to be used when applying the spectral method for calculating an emergency combination of loads, taking into account seismic effects, to determine the value of the calculated relative ground accelerations of the construction site under study.
地球动力学
意图本文在地面运动的物理参数:峰值地面加速度(PGA)、峰值地面速度(PGV)或峰值地面位移(PGD)方面证实了绘制基辅地震区划图的必要性,这些参数是有效使用计算建筑物、构筑物和个别责任建筑地震荷载的方法的基础。绘制此类地图的中间阶段是根据土壤物理参数分布特性的影响,根据地震土壤振荡频谱增量的相对积分估计,绘制基辅地区的地震分区图。中间图给出了土壤光谱特征对地震灾害影响的定量评估在城市范围内的分布,用系统物理量表示。方法论应用了一种分析经验方法来绘制领土的地震灾害图。在基辅境内,使用地震地质类比方法,确定了地震效应在物理参数(位移、速度、加速度)和土层显著影响土壤光谱特征的能力方面存在显著差异的区域(分类区)。后果对于每个分类带,都建立了一个具有非弹性变形参数的计算地震地质模型,这使得考虑在重大地震影响下非线性效应的发生成为可能。使用等效线性模型来计算每个分类带的地震地质土壤模型的频率响应。计算了基辅地区地面条件下的平均频率响应。建立了基辅地区地震振荡积分放大与平均值的偏差分布图。积分谱放大是子谱函数的面积。对地震地质模型中地震振荡的传播进行了动力学分析,并说明了上部沉积层对自由表面峰值地面加速度PGA值的影响。独创性基辅境内首次确定了土壤对地震效应反应不同的区域(分类区)。绘制了基辅地区土壤地震振荡积分放大与平均值偏差的分布图。实际意义。在考虑地震效应的情况下,应用频谱法计算紧急荷载组合时,建议使用基辅土壤振荡振幅地震分区图,以确定所研究施工现场的计算相对地面加速度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geodynamics
Geodynamics GEOCHEMISTRY & GEOPHYSICS-
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信