The fate of Landau levels under $\delta$-interactions

IF 1 3区 数学 Q1 MATHEMATICS
J. Behrndt, M. Holzmann, V. Lotoreichik, G. Raikov
{"title":"The fate of Landau levels under $\\delta$-interactions","authors":"J. Behrndt, M. Holzmann, V. Lotoreichik, G. Raikov","doi":"10.4171/jst/422","DOIUrl":null,"url":null,"abstract":"We consider the self-adjoint Landau Hamiltonian $H_0$ in $L^2(\\mathbb{R}^2)$ whose spectrum consists of infinitely degenerate eigenvalues $\\Lambda_q$, $q \\in \\mathbb{Z}_+$, and the perturbed operator $H_\\upsilon = H_0 + \\upsilon\\delta_\\Gamma$, where $\\Gamma \\subset \\mathbb{R}^2$ is a regular Jordan $C^{1,1}$-curve, and $\\upsilon \\in L^p(\\Gamma;\\mathbb{R})$, $p>1$, has a constant sign. We investigate ${\\rm Ker}(H_\\upsilon -\\Lambda_q)$, $q \\in \\mathbb{Z}_+$, and show that generically $$0 \\leq {\\rm dim \\, Ker}(H_\\upsilon -\\Lambda_q) - {\\rm dim \\, Ker}(T_q(\\upsilon \\delta_\\Gamma))<\\infty,$$ where $T_q(\\upsilon \\delta_\\Gamma) = p_q (\\upsilon \\delta_\\Gamma)p_q$, is an operator of Berezin-Toeplitz type, acting in $p_q L^2(\\mathbb{R}^2)$, and $p_q$ is the orthogonal projection on ${\\rm Ker}\\,(H_0 -\\Lambda_q)$. If $\\upsilon \\neq 0$ and $q = 0$, we prove that ${\\rm Ker}\\,(T_0(\\upsilon \\delta_\\Gamma)) = \\{0\\}$. If $q \\geq 1$, and $\\Gamma = \\mathcal{C}_r$ is a circle of radius $r$, we show that ${\\rm dim \\, Ker} (T_q(\\delta_{\\mathcal{C}_r})) \\leq q$, and the set of $r \\in (0,\\infty)$ for which ${\\rm dim \\, Ker}(T_q(\\delta_{\\mathcal{C}_r})) \\geq 1$, is infinite and discrete.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jst/422","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the self-adjoint Landau Hamiltonian $H_0$ in $L^2(\mathbb{R}^2)$ whose spectrum consists of infinitely degenerate eigenvalues $\Lambda_q$, $q \in \mathbb{Z}_+$, and the perturbed operator $H_\upsilon = H_0 + \upsilon\delta_\Gamma$, where $\Gamma \subset \mathbb{R}^2$ is a regular Jordan $C^{1,1}$-curve, and $\upsilon \in L^p(\Gamma;\mathbb{R})$, $p>1$, has a constant sign. We investigate ${\rm Ker}(H_\upsilon -\Lambda_q)$, $q \in \mathbb{Z}_+$, and show that generically $$0 \leq {\rm dim \, Ker}(H_\upsilon -\Lambda_q) - {\rm dim \, Ker}(T_q(\upsilon \delta_\Gamma))<\infty,$$ where $T_q(\upsilon \delta_\Gamma) = p_q (\upsilon \delta_\Gamma)p_q$, is an operator of Berezin-Toeplitz type, acting in $p_q L^2(\mathbb{R}^2)$, and $p_q$ is the orthogonal projection on ${\rm Ker}\,(H_0 -\Lambda_q)$. If $\upsilon \neq 0$ and $q = 0$, we prove that ${\rm Ker}\,(T_0(\upsilon \delta_\Gamma)) = \{0\}$. If $q \geq 1$, and $\Gamma = \mathcal{C}_r$ is a circle of radius $r$, we show that ${\rm dim \, Ker} (T_q(\delta_{\mathcal{C}_r})) \leq q$, and the set of $r \in (0,\infty)$ for which ${\rm dim \, Ker}(T_q(\delta_{\mathcal{C}_r})) \geq 1$, is infinite and discrete.
$\delta$相互作用下朗道能级的命运
我们考虑$L^2(\mathbb{R}^2)$中的自伴Landau哈密顿算子$H_0$,其谱由无限退化的特征值$\Lambda_q$,$q\in\mathbb组成{Z}_+$,扰动算子$H_\upsilon=H_0+\upsilon\delta_\Gamma$,其中$\Gamma\subet\mathbb{R}^2$是正则Jordan$C^{1,}$曲线,并且L^p(\Gamma;\mathbb{R})$中的$\upsilon,$p>1$具有常号{Z}_+$,并证明一般$$0\leq{\rm dim\,Ker}(H_\upsilon-\Lambda_q)-{\rm-dim,Ker}(T_q(\upsilon\delta_\Gamma))0-\Lambda_q)$。如果$\upsilon\neq0$和$q=0$,我们证明了${\rm-Ker}\,(T_0(\upsila\delta_\Gamma))=\{0\}$。如果$q\geq 1$,并且$\Gamma=\mathcal{C}_r$是半径为$r$的圆,我们证明了${\rm dim\,Ker}(T_q(\delta_{\mathcal{C}_r}))\leq q$,以及$r\in(0,\infty)$的集合,其中${\rm dim\,Ker}(T_q(\delta_{\mathcal{C}_r}))\geq1$是无限的和离散的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Spectral Theory
Journal of Spectral Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
0.00%
发文量
30
期刊介绍: The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome. The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory. Schrödinger operators, scattering theory and resonances; eigenvalues: perturbation theory, asymptotics and inequalities; quantum graphs, graph Laplacians; pseudo-differential operators and semi-classical analysis; random matrix theory; the Anderson model and other random media; non-self-adjoint matrices and operators, including Toeplitz operators; spectral geometry, including manifolds and automorphic forms; linear and nonlinear differential operators, especially those arising in geometry and physics; orthogonal polynomials; inverse problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信