Total Edge Irregularity Strength of the Cartesian Product of Bipartite Graphs and Paths

IF 0.3 Q4 MATHEMATICS
R. W. N. Wijaya, J. Ryan, T. Kalinowski
{"title":"Total Edge Irregularity Strength of the Cartesian Product of Bipartite Graphs and Paths","authors":"R. W. N. Wijaya, J. Ryan, T. Kalinowski","doi":"10.22342/jims.29.2.1321.156-165","DOIUrl":null,"url":null,"abstract":"For a simple graph G = (V (G), E(G)), a total labeling ∂ is called an edge irregular total k-labeling of G if ∂ : V (G) ∪ E(G) → {1, 2, . . . , k} such that for any two different edges uv and u'v' in E(G), we have wt∂(uv) not equal to wt∂(u'v') where wt∂(uv) = ∂(u) + ∂(v) + ∂(uv). The minimum k for which G has an edge irregulartotal k-labeling is called the total edge irregularity strength, denoted by tes(G). It is known that ceil((|E(G)|+2)/3) is a lower bound for the total edge irregularity strength of a graph G. In this paper we prove that if G is a bipartite graph for which this bound is tight then this is also true for Cartesian product of G with any path.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/jims.29.2.1321.156-165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a simple graph G = (V (G), E(G)), a total labeling ∂ is called an edge irregular total k-labeling of G if ∂ : V (G) ∪ E(G) → {1, 2, . . . , k} such that for any two different edges uv and u'v' in E(G), we have wt∂(uv) not equal to wt∂(u'v') where wt∂(uv) = ∂(u) + ∂(v) + ∂(uv). The minimum k for which G has an edge irregulartotal k-labeling is called the total edge irregularity strength, denoted by tes(G). It is known that ceil((|E(G)|+2)/3) is a lower bound for the total edge irregularity strength of a graph G. In this paper we prove that if G is a bipartite graph for which this bound is tight then this is also true for Cartesian product of G with any path.
二部图与路径笛卡尔积的总边不规则强度
对于一个简单图G = (V (G), E(G)),如果∂:V (G)∪E(G)→{1,2,…,则总标记∂称为G的边缘不规则总标记∂。, k}使得对于E(G)中任意两条不同的边uv和u'v',我们有wt∂(uv)不等于wt∂(u'v')其中wt∂(uv) =∂(u) +∂(v) +∂(uv)。G具有边不规则性总k标记的最小k称为边不规则性总强度,用tes(G)表示。已知ceil((b| E(G)|+2)/3)是图G的总边不规则强度的下界。本文证明了如果G是一个二部图,且该下界是紧的,则对于G与任意路径的笛卡尔积也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信