An Expectation Maximization Algorithm for LiDAR Point Cloud Classification

Nguyen Thi Huu Phuong
{"title":"An Expectation Maximization Algorithm for LiDAR Point Cloud Classification","authors":"Nguyen Thi Huu Phuong","doi":"10.17265/2162-5263/2020.02.003","DOIUrl":null,"url":null,"abstract":"LiDAR (Light Detection and Ranging) technology is now commonly used in geospatial technology when it is an active remote sensing technology and capable of collecting data on large areas. However, with a large dataset of measurement areas, selecting and using the data in accordance with the research purpose takes a lot of time to conduct the classification of points. The algorithm selection in LiDAR data processing problem is important in the use of lidar data. EM (Expectation Maximization) algorithm is a typical algorithm of data mining, with the advantage of being easy to install and understand the algorithm used in classification problems. In this study, the author improved the EM algorithm in classification of lidar point cloud by using scheduling parameters to reduce the convergence time of the algorithm.","PeriodicalId":58493,"journal":{"name":"环境科学与工程:B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与工程:B","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.17265/2162-5263/2020.02.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

LiDAR (Light Detection and Ranging) technology is now commonly used in geospatial technology when it is an active remote sensing technology and capable of collecting data on large areas. However, with a large dataset of measurement areas, selecting and using the data in accordance with the research purpose takes a lot of time to conduct the classification of points. The algorithm selection in LiDAR data processing problem is important in the use of lidar data. EM (Expectation Maximization) algorithm is a typical algorithm of data mining, with the advantage of being easy to install and understand the algorithm used in classification problems. In this study, the author improved the EM algorithm in classification of lidar point cloud by using scheduling parameters to reduce the convergence time of the algorithm.
激光雷达点云分类的期望最大化算法
激光雷达(光探测和测距)技术作为一种主动遥感技术,能够在大范围内收集数据,现已广泛应用于地理空间技术。然而,由于测量区域的数据集很大,根据研究目的选择和使用数据需要花费大量的时间来进行点的分类。激光雷达数据处理问题中的算法选择是激光雷达数据应用的重要内容。EM (Expectation Maximization)算法是一种典型的数据挖掘算法,在分类问题中具有易于安装和易于理解的优点。在本研究中,作者对激光雷达点云分类中的EM算法进行了改进,利用调度参数来缩短算法的收敛时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
575
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信