{"title":"Machine Learning for Intelligent Data Analysis and Automation in Cybersecurity: Current and Future Prospects","authors":"Iqbal H. Sarker","doi":"10.1007/s40745-022-00444-2","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the digitization and Internet of Things revolutions, the present electronic world has a wealth of cybersecurity data. Efficiently resolving cyber anomalies and attacks is becoming a growing concern in today’s cyber security industry all over the world. Traditional security solutions are insufficient to address contemporary security issues due to the rapid proliferation of many sorts of cyber-attacks and threats. Utilizing artificial intelligence knowledge, especially <i>machine learning</i> technology, is essential to providing a dynamically enhanced, automated, and up-to-date security system through analyzing security data. In this paper, we provide an extensive view of <i>machine learning</i> algorithms, emphasizing how they can be employed for <i>intelligent data analysis</i> and <i>automation</i> in cybersecurity through their potential to extract valuable insights from cyber data. We also explore a number of potential <i>real-world use cases</i> where data-driven intelligence, automation, and decision-making enable next-generation cyber protection that is more proactive than traditional approaches. The <i>future prospects</i> of machine learning in cybersecurity are eventually emphasized based on our study, along with relevant research directions. Overall, our goal is to explore not only the current state of machine learning and relevant methodologies but also their applicability for future cybersecurity breakthroughs.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40745-022-00444-2.pdf","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-022-00444-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 14
Abstract
Due to the digitization and Internet of Things revolutions, the present electronic world has a wealth of cybersecurity data. Efficiently resolving cyber anomalies and attacks is becoming a growing concern in today’s cyber security industry all over the world. Traditional security solutions are insufficient to address contemporary security issues due to the rapid proliferation of many sorts of cyber-attacks and threats. Utilizing artificial intelligence knowledge, especially machine learning technology, is essential to providing a dynamically enhanced, automated, and up-to-date security system through analyzing security data. In this paper, we provide an extensive view of machine learning algorithms, emphasizing how they can be employed for intelligent data analysis and automation in cybersecurity through their potential to extract valuable insights from cyber data. We also explore a number of potential real-world use cases where data-driven intelligence, automation, and decision-making enable next-generation cyber protection that is more proactive than traditional approaches. The future prospects of machine learning in cybersecurity are eventually emphasized based on our study, along with relevant research directions. Overall, our goal is to explore not only the current state of machine learning and relevant methodologies but also their applicability for future cybersecurity breakthroughs.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.