On the mixed-twist construction and monodromy of associated Picard–Fuchs systems

IF 1.2 3区 数学 Q1 MATHEMATICS
Andreas Malmendier, Michael T. Schultz
{"title":"On the mixed-twist construction and monodromy of associated Picard–Fuchs systems","authors":"Andreas Malmendier, Michael T. Schultz","doi":"10.4310/CNTP.2022.v16.n3.a2","DOIUrl":null,"url":null,"abstract":". We use the mixed-twist construction of Doran and Malmendier to obtain a multi-parameter family of K3 surfaces of Picard rank ρ ≥ 16. Upon identifying a particular Jacobian elliptic fibration on its general member, we determine the lattice polarization and the Picard-Fuchs system for the family. We construct a sequence of restrictions that lead to extensions of the polarization by two-elementary lattices. We show that the Picard-Fuchs operators for the restricted families coincide with known resonant hypergeometric systems. Second, for the one-parameter mirror families of deformed Fermat hypersurfaces we show that the mixed-twist construction produces a non-resonant GKZ system for which a basis of solutions in the form of absolutely convergent Mellin-Barnes integrals exists whose monodromy we compute explicitly.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2022.v16.n3.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. We use the mixed-twist construction of Doran and Malmendier to obtain a multi-parameter family of K3 surfaces of Picard rank ρ ≥ 16. Upon identifying a particular Jacobian elliptic fibration on its general member, we determine the lattice polarization and the Picard-Fuchs system for the family. We construct a sequence of restrictions that lead to extensions of the polarization by two-elementary lattices. We show that the Picard-Fuchs operators for the restricted families coincide with known resonant hypergeometric systems. Second, for the one-parameter mirror families of deformed Fermat hypersurfaces we show that the mixed-twist construction produces a non-resonant GKZ system for which a basis of solutions in the form of absolutely convergent Mellin-Barnes integrals exists whose monodromy we compute explicitly.
关于相关Picard-Fuchs系统的混合扭曲结构和单调性
.我们使用Doran和Malmendier的混合扭曲构造,得到了Picard秩ρ≥16的K3曲面的多参数族。在确定其一般成员上的特定雅可比椭圆振动后,我们确定了该族的晶格极化和Picard-Fuchs系统。我们构造了一系列的限制,这些限制导致两个基本晶格的极化扩展。我们证明了限制族的Picard-Fuchs算子与已知的共振超几何系统是一致的。其次,对于变形Fermat超曲面的单参数镜像族,我们证明了混合扭曲结构产生了一个非共振GKZ系统,对于该系统,存在绝对收敛Mellin-Barnes积分形式的解的基,我们显式计算了其单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信