New fixed figure results with the notion of k-ellipse

Nihal Tacs, Hülya Aytimur, cSaban Guvencc
{"title":"New fixed figure results with the notion of k-ellipse","authors":"Nihal Tacs, Hülya Aytimur, cSaban Guvencc","doi":"10.5937/matmor2301037a","DOIUrl":null,"url":null,"abstract":"In this paper, as a geometric approach to the fixed-point theory, we prove new fixed-figure results using the notion of k-ellipse on a metric space. For this purpose, we are inspired by the Caristi type mapping, Kannan type contraction, Chatterjea type contraction and Ćirić type contraction. After that, we give some existence and uniqueness theorems of a fixed k-ellipse. We also support our obtained results with illustrative examples. Finally, we present a new application to the S-Shaped Rectified Linear Activation Unit (SReLU) to show the importance of our theoretical results.","PeriodicalId":32415,"journal":{"name":"Mathematica Moravica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Moravica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/matmor2301037a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, as a geometric approach to the fixed-point theory, we prove new fixed-figure results using the notion of k-ellipse on a metric space. For this purpose, we are inspired by the Caristi type mapping, Kannan type contraction, Chatterjea type contraction and Ćirić type contraction. After that, we give some existence and uniqueness theorems of a fixed k-ellipse. We also support our obtained results with illustrative examples. Finally, we present a new application to the S-Shaped Rectified Linear Activation Unit (SReLU) to show the importance of our theoretical results.
用k-椭圆的概念得到了新的固定图形
在本文中,作为不动点理论的一种几何方法,我们在度量空间上利用k-椭圆的概念证明了新的不动点结果。为此,我们受到了Caristi型映射、Kannan型收缩、Chatterjea型收缩和Ćirić型收缩的启发。然后,给出了一个固定k椭圆的存在性和唯一性定理。我们还用示例来支持我们获得的结果。最后,我们提出了S形整流线性激活单元(SReLU)的新应用,以表明我们的理论结果的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
2
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信