Pseudo-Hermitian Matrix Exactly Solvable Hamiltonian

A. Nininahazwe
{"title":"Pseudo-Hermitian Matrix Exactly Solvable Hamiltonian","authors":"A. Nininahazwe","doi":"10.4236/OJM.2019.91001","DOIUrl":null,"url":null,"abstract":"The non PT-symmetric exactly solvable Hamiltonian describing a system of a fermion in the external magnetic field which couples to a harmonic oscillator through some pseudo-hermitian interaction is considered. We point out all properties of both of the original Mandal and the original Jaynes-Cummings Hamitonians. It is shown that these Hamiltonians are respectively pseudo-hermitian and hermitian REF _Ref536606452 \\r \\h \\* MERGEFORMAT [1] REF _Ref536606454 \\r \\h [2]. Like the direct approach to invariant vector spaces used in Refs. REF _Ref536606456 \\r \\h [3] REF _Ref536606457 \\r \\h [4], we reveal the exact solvability of both the Mandal and Jaynes-Cummings Hamiltonians after expressing them in the position operator and the impulsion operator.","PeriodicalId":57566,"journal":{"name":"微观物理学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微观物理学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJM.2019.91001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The non PT-symmetric exactly solvable Hamiltonian describing a system of a fermion in the external magnetic field which couples to a harmonic oscillator through some pseudo-hermitian interaction is considered. We point out all properties of both of the original Mandal and the original Jaynes-Cummings Hamitonians. It is shown that these Hamiltonians are respectively pseudo-hermitian and hermitian REF _Ref536606452 \r \h \* MERGEFORMAT [1] REF _Ref536606454 \r \h [2]. Like the direct approach to invariant vector spaces used in Refs. REF _Ref536606456 \r \h [3] REF _Ref536606457 \r \h [4], we reveal the exact solvability of both the Mandal and Jaynes-Cummings Hamiltonians after expressing them in the position operator and the impulsion operator.
伪埃尔米特矩阵精确可解哈密顿量
考虑了描述外磁场中费米子系统的非PT对称精确可解哈密顿量,该系统通过一些伪hermitian相互作用耦合到谐振子。我们指出了原始Mandal和原始Jaynes Cummings Hamitonians的所有性质。结果表明,这些哈密顿量分别是伪hermitian和hermitian REF_Ref536606452\h\*MERGEFORMAT[1]REF_Ref535606454\h[2]。类似于参考文献中使用的不变向量空间的直接方法。REF_Ref536606456\r[3]REF_Ref535606457\r[4],我们在用位置算子和脉冲算子表示Mandal和Jaynes-Cummings哈密顿量后,揭示了它们的精确可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信