{"title":"Pseudo-Hermitian Matrix Exactly Solvable Hamiltonian","authors":"A. Nininahazwe","doi":"10.4236/OJM.2019.91001","DOIUrl":null,"url":null,"abstract":"The non PT-symmetric exactly solvable Hamiltonian describing a system of a fermion in the external magnetic field which couples to a harmonic oscillator through some pseudo-hermitian interaction is considered. We point out all properties of both of the original Mandal and the original Jaynes-Cummings Hamitonians. It is shown that these Hamiltonians are respectively pseudo-hermitian and hermitian REF _Ref536606452 \\r \\h \\* MERGEFORMAT [1] REF _Ref536606454 \\r \\h [2]. Like the direct approach to invariant vector spaces used in Refs. REF _Ref536606456 \\r \\h [3] REF _Ref536606457 \\r \\h [4], we reveal the exact solvability of both the Mandal and Jaynes-Cummings Hamiltonians after expressing them in the position operator and the impulsion operator.","PeriodicalId":57566,"journal":{"name":"微观物理学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微观物理学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJM.2019.91001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The non PT-symmetric exactly solvable Hamiltonian describing a system of a fermion in the external magnetic field which couples to a harmonic oscillator through some pseudo-hermitian interaction is considered. We point out all properties of both of the original Mandal and the original Jaynes-Cummings Hamitonians. It is shown that these Hamiltonians are respectively pseudo-hermitian and hermitian REF _Ref536606452 \r \h \* MERGEFORMAT [1] REF _Ref536606454 \r \h [2]. Like the direct approach to invariant vector spaces used in Refs. REF _Ref536606456 \r \h [3] REF _Ref536606457 \r \h [4], we reveal the exact solvability of both the Mandal and Jaynes-Cummings Hamiltonians after expressing them in the position operator and the impulsion operator.