Simplified moment-curvature relationship in analytical form for circular RC sections

IF 0.8 Q4 ENGINEERING, GEOLOGICAL
R. Gentile, F. Porco, D. Raffaele, G. Uva
{"title":"Simplified moment-curvature relationship in analytical form for circular RC sections","authors":"R. Gentile, F. Porco, D. Raffaele, G. Uva","doi":"10.5459/bnzsee.51.3.145-158","DOIUrl":null,"url":null,"abstract":"The behaviour of regular multi-span simply-supported bridges is strongly dependent on the behaviour of its piers. The response of a pier is governed, in general, by different mechanisms: flexure, shear, second order effects, lap-splice of longitudinal bars or their buckling. The flexural behaviour is an important part of the problem, and it can be characterised through the equivalent plastic hinge length and the Moment-Curvature law of the fixed end. In this paper, a procedure to calculate the Moment-Curvature relationship of circular RC sections is proposed which is based on defining the position of few characteristic points. The analytical formulation is based on adjusted polynomial functions fitted on a database of fibre-based analyses. The proposed solution is based on three parameters: dimensionless axial force, mechanical ratio of longitudinal reinforcement, geometrical ratio of transverse reinforcement. A benchmark case is presented to compare the solution to a FEM non-linear analysis. Even if it is based on few input data, this solution allows to have good indicators on the material performances (e.g. yielding, spalling, etc). For these reasons, the proposed approach is deemed to be particularly effective in performing quick yet accurate mechanics-based regional-scale assessment of bridges.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.51.3.145-158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 11

Abstract

The behaviour of regular multi-span simply-supported bridges is strongly dependent on the behaviour of its piers. The response of a pier is governed, in general, by different mechanisms: flexure, shear, second order effects, lap-splice of longitudinal bars or their buckling. The flexural behaviour is an important part of the problem, and it can be characterised through the equivalent plastic hinge length and the Moment-Curvature law of the fixed end. In this paper, a procedure to calculate the Moment-Curvature relationship of circular RC sections is proposed which is based on defining the position of few characteristic points. The analytical formulation is based on adjusted polynomial functions fitted on a database of fibre-based analyses. The proposed solution is based on three parameters: dimensionless axial force, mechanical ratio of longitudinal reinforcement, geometrical ratio of transverse reinforcement. A benchmark case is presented to compare the solution to a FEM non-linear analysis. Even if it is based on few input data, this solution allows to have good indicators on the material performances (e.g. yielding, spalling, etc). For these reasons, the proposed approach is deemed to be particularly effective in performing quick yet accurate mechanics-based regional-scale assessment of bridges.
圆形钢筋混凝土截面的简化弯矩-曲率分析关系
规则多跨简支梁桥的性能在很大程度上取决于其桥墩的性能。桥墩的响应通常由不同的机制控制:弯曲、剪切、二阶效应、纵向钢筋的搭接或屈曲。弯曲性能是问题的重要组成部分,它可以通过等效塑性铰链长度和固定端的弯矩-曲率定律来表征。本文在定义几个特征点位置的基础上,提出了一种计算圆形钢筋混凝土截面弯矩-曲率关系的方法。分析公式基于基于纤维分析数据库上拟合的调整多项式函数。所提出的解决方案基于三个参数:无量纲轴向力、纵向钢筋的力学比、横向钢筋的几何比。给出了一个基准案例,将该解与有限元非线性分析进行比较。即使它是基于很少的输入数据,这种解决方案也允许对材料性能(例如屈服、剥落等)有良好的指标。由于这些原因,所提出的方法被认为在对桥梁进行快速而准确的基于力学的区域尺度评估方面特别有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信