Hao Zeng, Ruinan Mu, Keyan Huo, Haifeng Zhao, Ke Wang, Anping Wang
{"title":"A novel 3D-printable tensegrity-inspired metamaterial enabling dynamic attenuation","authors":"Hao Zeng, Ruinan Mu, Keyan Huo, Haifeng Zhao, Ke Wang, Anping Wang","doi":"10.1007/s10999-023-09656-7","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic attenuation is a major concern in many engineering fields, and excessive energy inputs may cause fatal damages to the key devices. Therefore, there is always a demand to pursue a novel structure with the energy attenuation capacity. A metamaterial with periodic lattice-disc unit cells inspired by the tensegrity topological configuration is proposed in this study. Both theoretical and numerical modeling are conducted to examine the effects of geometrical dimensions on the bandgaps. Two types of chains are compared, including monoatomic and diatomic ones. With the increase of the number of unit cells, the dynamic attenuation effect of the bandgaps becomes prominent. This tensegrity-inspired metamaterial is 3D-printable by additive manufacturing technology. Both frequency sweep experiment and low-speed impact test are conducted. The torsional vibration mode is identified, which is decoupled with the axial vibration mode. Both improved spring-mass model and finite element model to describe the dual modes are developed to match well with the experiments. The behaviors of metamaterial bandgaps are fully verified by both numerical simulation and experiments. This study provides a novel idea for the design of additively-manufactured metamaterials for energy dissipation.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 4","pages":"883 - 901"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09656-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Dynamic attenuation is a major concern in many engineering fields, and excessive energy inputs may cause fatal damages to the key devices. Therefore, there is always a demand to pursue a novel structure with the energy attenuation capacity. A metamaterial with periodic lattice-disc unit cells inspired by the tensegrity topological configuration is proposed in this study. Both theoretical and numerical modeling are conducted to examine the effects of geometrical dimensions on the bandgaps. Two types of chains are compared, including monoatomic and diatomic ones. With the increase of the number of unit cells, the dynamic attenuation effect of the bandgaps becomes prominent. This tensegrity-inspired metamaterial is 3D-printable by additive manufacturing technology. Both frequency sweep experiment and low-speed impact test are conducted. The torsional vibration mode is identified, which is decoupled with the axial vibration mode. Both improved spring-mass model and finite element model to describe the dual modes are developed to match well with the experiments. The behaviors of metamaterial bandgaps are fully verified by both numerical simulation and experiments. This study provides a novel idea for the design of additively-manufactured metamaterials for energy dissipation.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.