Dissolved Oxygen Prediction of the Ciliwung River using Artificial Neural Networks, Support Vector Machine, and Streeter-Phelps

Yonas Prima Arga Rumbyarso, Nuke L. Chusna, A. Khumaidi
{"title":"Dissolved Oxygen Prediction of the Ciliwung River using Artificial Neural Networks, Support Vector Machine, and Streeter-Phelps","authors":"Yonas Prima Arga Rumbyarso, Nuke L. Chusna, A. Khumaidi","doi":"10.24843/jim.2022.v10.i03.p06","DOIUrl":null,"url":null,"abstract":"Evaluation of Ciliwung river water quality can be done by analyzing the distribution of dissolved oxygen (DO). The purpose of this research is to analyze the environmental parameters that affect the distribution of DO, by carrying out predictive modeling to estimate the distribution of DO in the Ciliwung River. The research data used primary data and secondary data, some of which were obtained from previous studies. The water quality parameters used are DO, temperature, biochemical oxygen demand, chemical oxygen demand, power of hydrogen, and turbidity. The dataset used has a missing value of 28.8%. To optimize the model results, preprocessing is carried out using a machine learning approach, namely comparing support vector machine (SVM), artificial neural networks (ANN), and linear regression. The three models were compared to predict DO, the results of performance evaluation of the SVM, ANN and Streeter-Phelps models had RMSE values of 0.110, 0.771, and 0.114.","PeriodicalId":32334,"journal":{"name":"Jurnal Ilmiah Merpati Menara Penelitian Akademika Teknologi Informasi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Merpati Menara Penelitian Akademika Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/jim.2022.v10.i03.p06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluation of Ciliwung river water quality can be done by analyzing the distribution of dissolved oxygen (DO). The purpose of this research is to analyze the environmental parameters that affect the distribution of DO, by carrying out predictive modeling to estimate the distribution of DO in the Ciliwung River. The research data used primary data and secondary data, some of which were obtained from previous studies. The water quality parameters used are DO, temperature, biochemical oxygen demand, chemical oxygen demand, power of hydrogen, and turbidity. The dataset used has a missing value of 28.8%. To optimize the model results, preprocessing is carried out using a machine learning approach, namely comparing support vector machine (SVM), artificial neural networks (ANN), and linear regression. The three models were compared to predict DO, the results of performance evaluation of the SVM, ANN and Streeter-Phelps models had RMSE values of 0.110, 0.771, and 0.114.
基于人工神经网络、支持向量机与Streeter-Phelps之奇力翁河溶解氧预测
通过溶解氧(DO)的分布分析,可以对慈溪翁河水质进行评价。本研究的目的是分析影响DO分布的环境参数,通过进行预测模型来估计慈溪翁江DO的分布。研究数据使用了一手数据和二手数据,其中一些数据来自于以往的研究。水质参数为溶解氧、温度、生化需氧量、化学需氧量、氢功率、浊度。使用的数据集缺失值为28.8%。为了优化模型结果,使用机器学习方法进行预处理,即比较支持向量机(SVM)、人工神经网络(ANN)和线性回归。对比三种模型对DO的预测效果,SVM、ANN和Streeter-Phelps模型的性能评价结果RMSE值分别为0.110、0.771和0.114。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信