Plasticity: from Crystal Lattice to Macroscopic Phenomena

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. Zuev, S. Barannikova, V. Danilov, V. Gorbatenko
{"title":"Plasticity: from Crystal Lattice to Macroscopic Phenomena","authors":"L. Zuev, S. Barannikova, V. Danilov, V. Gorbatenko","doi":"10.15407/UFM.22.01.003","DOIUrl":null,"url":null,"abstract":"New representations concerning plasticity physics in crystals are discussed. The model of plastic flow is suggested, which can describe its main regularities. With the use of the experimental investigation, it is shown that the plastic flow localization plays the role in the evolution of plastic deformation. Obtained data are explained with the application of the principles of nonequilibrium-systems’ theory. The quasi-particle is introduced for the description of plasticity phenomenon. It is established the relation between plasticity characteristics of metals and their position in Periodic table of the elements. A new model is elaborated to address localized plastic-flow evolution in solids. The basic assumption of the proposed model is that the elementary plasticity acts evolving in the deforming of medium would generate acoustic emission pulses, which interact with the plasticity carriers and initiate new elementary shears. As found experimentally, the macrolocalization of plastic flow involves a variety of autowave processes. To address the phenomenon of localized plastic-flow autowaves, a new quasi-particle called ‘autolocalizon’ is introduced; the criterion of validity of the concept is assessed.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/UFM.22.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 20

Abstract

New representations concerning plasticity physics in crystals are discussed. The model of plastic flow is suggested, which can describe its main regularities. With the use of the experimental investigation, it is shown that the plastic flow localization plays the role in the evolution of plastic deformation. Obtained data are explained with the application of the principles of nonequilibrium-systems’ theory. The quasi-particle is introduced for the description of plasticity phenomenon. It is established the relation between plasticity characteristics of metals and their position in Periodic table of the elements. A new model is elaborated to address localized plastic-flow evolution in solids. The basic assumption of the proposed model is that the elementary plasticity acts evolving in the deforming of medium would generate acoustic emission pulses, which interact with the plasticity carriers and initiate new elementary shears. As found experimentally, the macrolocalization of plastic flow involves a variety of autowave processes. To address the phenomenon of localized plastic-flow autowaves, a new quasi-particle called ‘autolocalizon’ is introduced; the criterion of validity of the concept is assessed.
塑性:从晶格到宏观现象
讨论了晶体塑性物理的新表述。提出了塑性流动模型,该模型可以描述塑性流动的主要规律。实验研究表明,塑性流动局部化在塑性变形的演化过程中起着重要作用。应用非平衡系统理论原理对所得数据进行了解释。引入准粒子来描述塑性现象。建立了金属的塑性特征和它们在元素周期表中的位置之间的关系。阐述了一种新的模型来解决固体中局部塑性流动的演变问题。该模型的基本假设是,在介质变形过程中演变的基本塑性行为会产生声发射脉冲,声发射脉冲与塑性载体相互作用,引发新的基本剪切。正如实验所发现的,塑性流动的宏观局部化涉及到各种自动波过程。为了解决局部塑性流动自动波现象,引入了一种新的准粒子“自动定位子”;评估了概念的有效性标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
18.80%
发文量
21
审稿时长
13 weeks
期刊介绍: The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信