Algebraic Hopf invariants and rational models for mapping spaces

IF 0.5 4区 数学
Felix Wierstra
{"title":"Algebraic Hopf invariants and rational models for mapping spaces","authors":"Felix Wierstra","doi":"10.1007/s40062-018-00230-z","DOIUrl":null,"url":null,"abstract":"<p>The main goal of this paper is to define an invariant <span>\\(mc_{\\infty }(f)\\)</span> of homotopy classes of maps <span>\\(f:X \\rightarrow Y_{\\mathbb {Q}}\\)</span>, from a finite CW-complex <i>X</i> to a rational space <span>\\(Y_{\\mathbb {Q}}\\)</span>. We prove that this invariant is complete, i.e. <span>\\(mc_{\\infty }(f)=mc_{\\infty }(g)\\)</span> if and only if <i>f</i> and <i>g</i> are homotopic. To construct this invariant we also construct a homotopy Lie algebra structure on certain convolution algebras. More precisely, given an operadic twisting morphism from a cooperad <span>\\(\\mathcal {C}\\)</span> to an operad <span>\\(\\mathcal {P}\\)</span>, a <span>\\(\\mathcal {C}\\)</span>-coalgebra <i>C</i> and a <span>\\(\\mathcal {P}\\)</span>-algebra <i>A</i>, then there exists a natural homotopy Lie algebra structure on <span>\\(Hom_\\mathbb {K}(C,A)\\)</span>, the set of linear maps from <i>C</i> to <i>A</i>. We prove some of the basic properties of this convolution homotopy Lie algebra and use it to construct the algebraic Hopf invariants. This convolution homotopy Lie algebra also has the property that it can be used to model mapping spaces. More precisely, suppose that <i>C</i> is a <span>\\(C_\\infty \\)</span>-coalgebra model for a simply-connected finite CW-complex <i>X</i> and <i>A</i> an <span>\\(L_\\infty \\)</span>-algebra model for a simply-connected rational space <span>\\(Y_{\\mathbb {Q}}\\)</span> of finite <span>\\(\\mathbb {Q}\\)</span>-type, then <span>\\(Hom_\\mathbb {K}(C,A)\\)</span>, the space of linear maps from <i>C</i> to <i>A</i>, can be equipped with an <span>\\(L_\\infty \\)</span>-structure such that it becomes a rational model for the based mapping space <span>\\(Map_*(X,Y_\\mathbb {Q})\\)</span>.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 3","pages":"719 - 747"},"PeriodicalIF":0.5000,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-00230-z","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-00230-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The main goal of this paper is to define an invariant \(mc_{\infty }(f)\) of homotopy classes of maps \(f:X \rightarrow Y_{\mathbb {Q}}\), from a finite CW-complex X to a rational space \(Y_{\mathbb {Q}}\). We prove that this invariant is complete, i.e. \(mc_{\infty }(f)=mc_{\infty }(g)\) if and only if f and g are homotopic. To construct this invariant we also construct a homotopy Lie algebra structure on certain convolution algebras. More precisely, given an operadic twisting morphism from a cooperad \(\mathcal {C}\) to an operad \(\mathcal {P}\), a \(\mathcal {C}\)-coalgebra C and a \(\mathcal {P}\)-algebra A, then there exists a natural homotopy Lie algebra structure on \(Hom_\mathbb {K}(C,A)\), the set of linear maps from C to A. We prove some of the basic properties of this convolution homotopy Lie algebra and use it to construct the algebraic Hopf invariants. This convolution homotopy Lie algebra also has the property that it can be used to model mapping spaces. More precisely, suppose that C is a \(C_\infty \)-coalgebra model for a simply-connected finite CW-complex X and A an \(L_\infty \)-algebra model for a simply-connected rational space \(Y_{\mathbb {Q}}\) of finite \(\mathbb {Q}\)-type, then \(Hom_\mathbb {K}(C,A)\), the space of linear maps from C to A, can be equipped with an \(L_\infty \)-structure such that it becomes a rational model for the based mapping space \(Map_*(X,Y_\mathbb {Q})\).

映射空间的代数Hopf不变量和有理模型
本文的主要目标是定义映射的同伦类\(f:X \rightarrow Y_{\mathbb {Q}}\)的不变量\(mc_{\infty }(f)\),从有限的cw复X到有理空间\(Y_{\mathbb {Q}}\)。我们证明了这个不变量是完全的,即\(mc_{\infty }(f)=mc_{\infty }(g)\)当且仅当f与g是同伦的。为了构造这个不变量,我们还构造了在某些卷积代数上的同伦李代数结构。更准确地说,给出了一个从协同算子\(\mathcal {C}\)到算子\(\mathcal {P}\)、\(\mathcal {C}\) -协代数C和\(\mathcal {P}\) -代数a的操作逆态射,则在\(Hom_\mathbb {K}(C,A)\)上存在一个自然同伦李代数结构,即从C到a的线性映射集。我们证明了这个卷积同伦李代数的一些基本性质,并用它来构造代数Hopf不变量。这种卷积同伦李代数还具有可以用于映射空间建模的性质。更确切地说,假设C是一个单连通有限cw复合体X的\(C_\infty \) -协代数模型,a是一个有限\(\mathbb {Q}\)型的单连通有理空间\(Y_{\mathbb {Q}}\)的\(L_\infty \) -代数模型,则从C到a的线性映射空间\(Hom_\mathbb {K}(C,A)\)可以具有\(L_\infty \) -结构,使其成为基于映射空间\(Map_*(X,Y_\mathbb {Q})\)的有理模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信