İbrahim Atmaca, Osman Samet Özdemir, A. Çağlar, Sezgi Koçak Soylu, M. Asiltürk
{"title":"Thermal Performance Testing of a Solar Water Heating System Using Core-Shell Structured Nanofluids","authors":"İbrahim Atmaca, Osman Samet Özdemir, A. Çağlar, Sezgi Koçak Soylu, M. Asiltürk","doi":"10.1080/15567265.2022.2146025","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study investigates the impact of core-shell based nanofluids on the thermal performance of a solar water heating system by studying the changes in the useful heat gain and collector efficiency. This work would be the first to report the use of core-shell nanoparticles in solar water heating systems. The core-shell structure allows for dual improvements in thermal conductivity and better nanofluid stability, even without a surfactant. Therefore, three novel nanofluids were prepared by adding 2 wt% TiO2@SiO2, Fe3O4@SiO2, and ZnO@SiO2 core-shell nanoparticles to pure water to be used in the experiments. The experimental thermal performances of the nanofluids were individually compared with pure water by the simultaneous operation of two identical systems. The results showed that the nanofluids with Fe3O4@SiO2 and ZnO@SiO2 particles had better performance than the base fluid. In particular, 16.65% and 5.40% increase in the useful energy gain and a 17.12% and 7.39% increase in the collector efficiency were observed with Fe3O4@SiO2 and ZnO@SiO2 core-shell based nanofluids, respectively. It is possible to conclude that, with their improved performance, the Fe3O4@SiO2-based nanofluids have great potential to be used in solar hot water systems instead of water.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"26 1","pages":"218 - 241"},"PeriodicalIF":2.7000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2022.2146025","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT This study investigates the impact of core-shell based nanofluids on the thermal performance of a solar water heating system by studying the changes in the useful heat gain and collector efficiency. This work would be the first to report the use of core-shell nanoparticles in solar water heating systems. The core-shell structure allows for dual improvements in thermal conductivity and better nanofluid stability, even without a surfactant. Therefore, three novel nanofluids were prepared by adding 2 wt% TiO2@SiO2, Fe3O4@SiO2, and ZnO@SiO2 core-shell nanoparticles to pure water to be used in the experiments. The experimental thermal performances of the nanofluids were individually compared with pure water by the simultaneous operation of two identical systems. The results showed that the nanofluids with Fe3O4@SiO2 and ZnO@SiO2 particles had better performance than the base fluid. In particular, 16.65% and 5.40% increase in the useful energy gain and a 17.12% and 7.39% increase in the collector efficiency were observed with Fe3O4@SiO2 and ZnO@SiO2 core-shell based nanofluids, respectively. It is possible to conclude that, with their improved performance, the Fe3O4@SiO2-based nanofluids have great potential to be used in solar hot water systems instead of water.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.