Davide Calandra, F. Gabriele Pratticò, Alberto Cannavò, Claudio Casetti, Fabrizio Lamberti
{"title":"Digital twin- and extended reality-based telepresence for collaborative robot programming in the 6G perspective","authors":"Davide Calandra, F. Gabriele Pratticò, Alberto Cannavò, Claudio Casetti, Fabrizio Lamberti","doi":"10.1016/j.dcan.2022.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of Industry 4.0, a paradigm shift from traditional industrial manipulators to Collaborative Robots (CRs) is ongoing, with the latter serving ever more closely humans as auxiliary tools in many production processes. In this scenario, continuous technological advancements offer new opportunities for further innovating robotics and other areas of next-generation industry. For example, 6G could play a prominent role due to its human-centric view of the industrial domains. In particular, its expected dependability features will pave the way for new applications exploiting highly effective Digital Twin (DT)- and eXtended Reality (XR)-based telepresence. In this work, a novel application for the above technologies allowing two distant users to collaborate in the programming of a CR is proposed. The approach encompasses demanding data flows (e.g., point cloud-based streaming of collaborating users and robotic environment), with network latency and bandwidth constraints. Results obtained by analyzing this approach from the viewpoint of network requirements in a setup designed to emulate 6G connectivity indicate that the expected performance of forthcoming mobile networks will make it fully feasible in principle.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822002164/pdfft?md5=efddeff83b48238ee773e98c5b856193&pid=1-s2.0-S2352864822002164-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002164","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of Industry 4.0, a paradigm shift from traditional industrial manipulators to Collaborative Robots (CRs) is ongoing, with the latter serving ever more closely humans as auxiliary tools in many production processes. In this scenario, continuous technological advancements offer new opportunities for further innovating robotics and other areas of next-generation industry. For example, 6G could play a prominent role due to its human-centric view of the industrial domains. In particular, its expected dependability features will pave the way for new applications exploiting highly effective Digital Twin (DT)- and eXtended Reality (XR)-based telepresence. In this work, a novel application for the above technologies allowing two distant users to collaborate in the programming of a CR is proposed. The approach encompasses demanding data flows (e.g., point cloud-based streaming of collaborating users and robotic environment), with network latency and bandwidth constraints. Results obtained by analyzing this approach from the viewpoint of network requirements in a setup designed to emulate 6G connectivity indicate that the expected performance of forthcoming mobile networks will make it fully feasible in principle.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.