Phase-Space Geometry and Optimal State Preparation in Quantum Metrology with Collective Spins

IF 11 Q1 PHYSICS, APPLIED
M. Muñoz-Arias, I. Deutsch, P. Poggi
{"title":"Phase-Space Geometry and Optimal State Preparation in Quantum Metrology with Collective Spins","authors":"M. Muñoz-Arias, I. Deutsch, P. Poggi","doi":"10.1103/PRXQuantum.4.020314","DOIUrl":null,"url":null,"abstract":"We revisit well-known protocols in quantum metrology using collective spins and propose a unifying picture for optimal state preparation based on a semiclassical description in phase space. We show how this framework allows for quantitative predictions of the timescales required to prepare various metrologically useful states, and that these predictions remain accurate even for moderate system sizes, surprisingly far from the classical limit. Furthermore, this framework allows us to build a geometric picture that relates optimal (exponentially fast) entangled probe preparation to the existence of separatrices connecting saddle points in phase space. We illustrate our results with the paradigmatic examples of the two-axis counter-twisting and twisting-and-turning Hamiltonians, where we provide analytical expressions for all the relevant optimal time scales. Finally, we propose a generalization of these models to include $p$-body collective interaction (or $p$-order twisting), beyond the usual case of $p=2$. Using our geometric framework, we prove a no-go theorem for the local optimality of these models for $p>2$.","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PRXQuantum.4.020314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 9

Abstract

We revisit well-known protocols in quantum metrology using collective spins and propose a unifying picture for optimal state preparation based on a semiclassical description in phase space. We show how this framework allows for quantitative predictions of the timescales required to prepare various metrologically useful states, and that these predictions remain accurate even for moderate system sizes, surprisingly far from the classical limit. Furthermore, this framework allows us to build a geometric picture that relates optimal (exponentially fast) entangled probe preparation to the existence of separatrices connecting saddle points in phase space. We illustrate our results with the paradigmatic examples of the two-axis counter-twisting and twisting-and-turning Hamiltonians, where we provide analytical expressions for all the relevant optimal time scales. Finally, we propose a generalization of these models to include $p$-body collective interaction (or $p$-order twisting), beyond the usual case of $p=2$. Using our geometric framework, we prove a no-go theorem for the local optimality of these models for $p>2$.
集体自旋量子计量中的相空间几何和最优态制备
我们重新审视了使用集体自旋的量子计量学中众所周知的协议,并基于相空间中的半经典描述,提出了最佳状态制备的统一图。我们展示了这个框架如何允许对准备各种计量学有用状态所需的时间尺度进行定量预测,并且这些预测即使对于中等规模的系统也保持准确,令人惊讶地远离经典极限。此外,该框架使我们能够构建一个几何图,将最佳(指数快速)纠缠探针制备与相空间中连接鞍点的分离物的存在联系起来。我们用双轴反扭曲、扭曲和转动哈密顿量的范例来说明我们的结果,其中我们提供了所有相关最佳时间尺度的解析表达式。最后,我们提出了这些模型的推广,以包括$p$-body集体交互(或$p$-顺序扭曲),而不是通常的$p=2$的情况。使用我们的几何框架,我们证明了$p>2$的这些模型的局部最优性的一个不可行定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信