Analisis Perbandingan Algoritma Forecasting dalam Prediksi Harga Saham LQ45 PT Bank Mandiri Sekuritas (BMRI)

Viry Puspaning Ramadhan, Fandi Yulian Pamuji
{"title":"Analisis Perbandingan Algoritma Forecasting dalam Prediksi Harga Saham LQ45 PT Bank Mandiri Sekuritas (BMRI)","authors":"Viry Puspaning Ramadhan, Fandi Yulian Pamuji","doi":"10.26905/jtmi.v8i1.6092","DOIUrl":null,"url":null,"abstract":"Economic development in Indonesia has slowed in recent years. This resulted in the movement of the index for several stocks listed on BEIm, especially LQ45 which also experienced increases and decreases. Therefore, it is necessary to analyze stock price movements so that the results of the analysis can be used by investors to make investment decisions. This study will apply several Forecasting algorithms such as Linear Regression and Neural Network to predict the stock price of LQ45 in the case study of Bank Mandiri Sekuritas (BMRI). By using four attributes, namely open, high, and low values as predictors and close as a class, this study focuses on determining the accuracy value, namely Root Mean Squared Error (RMSE) by optimizing parameter values. The test results obtained an RMSE value of 0.034 on the Neural Network method with the addition of a hidden layer and an RMSE value of 0.052 on the Linear Regression method with M5 Prime and Greedy Feature Selection with a min-tolerance value of 0.05.","PeriodicalId":31840,"journal":{"name":"Jurnal Teknologi dan Manajemen Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Manajemen Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26905/jtmi.v8i1.6092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Economic development in Indonesia has slowed in recent years. This resulted in the movement of the index for several stocks listed on BEIm, especially LQ45 which also experienced increases and decreases. Therefore, it is necessary to analyze stock price movements so that the results of the analysis can be used by investors to make investment decisions. This study will apply several Forecasting algorithms such as Linear Regression and Neural Network to predict the stock price of LQ45 in the case study of Bank Mandiri Sekuritas (BMRI). By using four attributes, namely open, high, and low values as predictors and close as a class, this study focuses on determining the accuracy value, namely Root Mean Squared Error (RMSE) by optimizing parameter values. The test results obtained an RMSE value of 0.034 on the Neural Network method with the addition of a hidden layer and an RMSE value of 0.052 on the Linear Regression method with M5 Prime and Greedy Feature Selection with a min-tolerance value of 0.05.
分析预测证券自力更生银行LQ45股价的预估算法(BMRI)
近年来,印度尼西亚的经济发展有所放缓。这导致了BEIm上上市的几只股票的指数波动,尤其是LQ45,它也经历了上涨和下跌。因此,有必要对股价走势进行分析,以便投资者能够利用分析结果做出投资决策。本研究将应用线性回归和神经网络等几种预测算法来预测LQ45的股价,并以Mandiri Sekuritas银行(BMRI)为例进行研究。通过使用四个属性,即开值、高值和低值作为预测因子,并将闭值作为一个类别,本研究侧重于通过优化参数值来确定准确度值,即均方根误差(RMSE)。测试结果在添加了隐藏层的神经网络方法上获得了0.034的RMSE值,在M5 Prime和Greedy Feature Selection的线性回归方法中获得了0.052的RMSE,最小容差值为0.05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信