Determination of Helmert transformation parameters for continuous GNSS networks: a case study of the Géoazur GNSS network

D. T. Tran, J. Nocquet, N. Luong, D. H. Nguyen
{"title":"Determination of Helmert transformation parameters for continuous GNSS networks: a case study of the Géoazur GNSS network","authors":"D. T. Tran, J. Nocquet, N. Luong, D. H. Nguyen","doi":"10.1080/10095020.2022.2138569","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we propose an approach to determine seven parameters of the Helmert transformation by transforming the coordinates of a continuous GNSS network from the World Geodetic System 1984 (WGS84) to the International Terrestrial Reference Frame. This includes (1) converting the coordinates of common points from the global coordinate system to the local coordinate system, (2) identifying and eliminating outliers by the Dikin estimator, and (3) estimating seven parameters of the Helmert transformation by least squares (LS) estimation with the “clean” data (i.e. outliers removed). Herein, the local coordinate system provides a platform to separate points’ horizontal and vertical components. Then, the Dikin estimator identifies and eliminates outliers in the horizontal or vertical component separately. It is significant because common points in a continuous GNSS network may contain outliers. The proposed approach is tested with the Géoazur GNSS network with the results showing that the Dikin estimator detects outliers at 6 out of 18 common points, among which three points are found with outliers in the vertical component only. Thus, instead of eliminating all coordinate components of these six common points, we only eliminate all coordinate components of three common points and only the vertical component of another three common points. Finally, the classical LS estimation is applied to “clean” data to estimate seven parameters of the Helmert transformation with a significant accuracy improvement. The Dikin estimator’s results are compared to those of other robust estimators of Huber and Theil-Sen, which shows that the Dikin estimator performs better. Furthermore, the weighted total least-squares estimation is implemented to assess the accuracy of the LS estimation with the same data. The inter-comparison of the seven estimated parameters and their standard deviations shows a small difference at a few per million levels (E-6).","PeriodicalId":58518,"journal":{"name":"武测译文","volume":"26 1","pages":"125 - 138"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"武测译文","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1080/10095020.2022.2138569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT In this paper, we propose an approach to determine seven parameters of the Helmert transformation by transforming the coordinates of a continuous GNSS network from the World Geodetic System 1984 (WGS84) to the International Terrestrial Reference Frame. This includes (1) converting the coordinates of common points from the global coordinate system to the local coordinate system, (2) identifying and eliminating outliers by the Dikin estimator, and (3) estimating seven parameters of the Helmert transformation by least squares (LS) estimation with the “clean” data (i.e. outliers removed). Herein, the local coordinate system provides a platform to separate points’ horizontal and vertical components. Then, the Dikin estimator identifies and eliminates outliers in the horizontal or vertical component separately. It is significant because common points in a continuous GNSS network may contain outliers. The proposed approach is tested with the Géoazur GNSS network with the results showing that the Dikin estimator detects outliers at 6 out of 18 common points, among which three points are found with outliers in the vertical component only. Thus, instead of eliminating all coordinate components of these six common points, we only eliminate all coordinate components of three common points and only the vertical component of another three common points. Finally, the classical LS estimation is applied to “clean” data to estimate seven parameters of the Helmert transformation with a significant accuracy improvement. The Dikin estimator’s results are compared to those of other robust estimators of Huber and Theil-Sen, which shows that the Dikin estimator performs better. Furthermore, the weighted total least-squares estimation is implemented to assess the accuracy of the LS estimation with the same data. The inter-comparison of the seven estimated parameters and their standard deviations shows a small difference at a few per million levels (E-6).
连续GNSS网络Helmert变换参数的确定——以gsamoazur GNSS网络为例
本文提出了一种将连续GNSS网络的坐标从1984年世界大地测量系统(WGS84)转换为国际地面参考系,确定Helmert变换7个参数的方法。这包括(1)将公共点的坐标从全局坐标系转换到局部坐标系,(2)用Dikin估计器识别和消除异常值,(3)用“干净”的数据(即去除异常值)用最小二乘(LS)估计Helmert变换的七个参数。在这里,局部坐标系提供了一个平台来分离点的水平和垂直分量。然后,Dikin估计器分别识别和消除水平或垂直分量中的异常值。这很重要,因为连续GNSS网络中的公共点可能包含异常值。在gsamoazur GNSS网络中对该方法进行了测试,结果表明Dikin估计器在18个共同点中检测到6个异常点,其中3个点仅在垂直分量中发现异常点。这样,我们就不再消去这六个公点的所有坐标分量,而是只消去三个公点的所有坐标分量和另外三个公点的垂直分量。最后,将经典LS估计应用于“干净”数据,估计Helmert变换的7个参数,精度有明显提高。将Dikin估计量的结果与Huber和Theil-Sen的其他鲁棒估计量的结果进行了比较,表明Dikin估计量具有更好的性能。在此基础上,采用加权总最小二乘估计来评估相同数据下LS估计的准确性。7个估计参数及其标准偏差的相互比较显示出百万分之几的微小差异(E-6)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信