Fabrication and Thermal Characterization of Composite Cu-CNT Micropillars for Capillary-driven Phase-Change Cooling Devices

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL
G. Rojo, S. Ghanbari, J. Darabi
{"title":"Fabrication and Thermal Characterization of Composite Cu-CNT Micropillars for Capillary-driven Phase-Change Cooling Devices","authors":"G. Rojo, S. Ghanbari, J. Darabi","doi":"10.1080/15567265.2019.1675830","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper presents the fabrication, testing, and modeling of an array of composite copper-carbon nanotubes (Cu-CNT) micropillars as a wick structure for potential application in passive phase-change cooling systems. This novel wick structure has a larger spacing at the base of the micropillars to provide a higher liquid permeability and mushroom-like structures on the top surface of the micropillars with a smaller spacing to provide a greater capillary pressure. The composite Cu-CNT micropillars were fabricated by an electrochemical deposition method on a patterned copper template. Cauliflower-like nanostructures were then grown on the top surface of the micropillars using chronoamperometry technique to improve the capillary pressure and thermal performance of the wick structure. After successful fabrication of the micropillars, a series of tests were conducted to quantify the thermal performance of the wick structures. The results demonstrate superior thermal and corrosion performances for composite Cu-CNT micropillars compared to those of copper micropillars. Additionally, a thermal resistance network analysis was conducted to model the thermal performance of the fabricated mushroom-shaped micropillar array. Model predictions were compared with the experimental results and good agreement was observed.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"317 - 333"},"PeriodicalIF":2.7000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2019.1675830","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2019.1675830","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 7

Abstract

ABSTRACT This paper presents the fabrication, testing, and modeling of an array of composite copper-carbon nanotubes (Cu-CNT) micropillars as a wick structure for potential application in passive phase-change cooling systems. This novel wick structure has a larger spacing at the base of the micropillars to provide a higher liquid permeability and mushroom-like structures on the top surface of the micropillars with a smaller spacing to provide a greater capillary pressure. The composite Cu-CNT micropillars were fabricated by an electrochemical deposition method on a patterned copper template. Cauliflower-like nanostructures were then grown on the top surface of the micropillars using chronoamperometry technique to improve the capillary pressure and thermal performance of the wick structure. After successful fabrication of the micropillars, a series of tests were conducted to quantify the thermal performance of the wick structures. The results demonstrate superior thermal and corrosion performances for composite Cu-CNT micropillars compared to those of copper micropillars. Additionally, a thermal resistance network analysis was conducted to model the thermal performance of the fabricated mushroom-shaped micropillar array. Model predictions were compared with the experimental results and good agreement was observed.
毛细管驱动相变冷却装置用复合Cu-CNT微柱的制备及热性能研究
摘要本文介绍了作为芯结构的复合铜-碳纳米管(Cu-CNT)微柱阵列的制造、测试和建模,该阵列在被动相变冷却系统中具有潜在的应用前景。这种新颖的毛细结构在微柱的底部具有较大的间距以提供更高的液体渗透性,并且在微柱顶表面上具有较小间距的蘑菇状结构以提供更大的毛细管压力。采用电化学沉积方法在图案化的铜模板上制备了复合Cu-CNT微柱。然后使用计时电流法技术在微柱的顶表面上生长花椰菜状纳米结构,以改善毛细结构的毛细管压力和热性能。在成功制造微柱后,进行了一系列测试来量化毛细结构的热性能。结果表明,与铜微柱相比,复合Cu-CNT微柱具有优异的热性能和腐蚀性能。此外,还进行了热阻网络分析,以模拟所制造的蘑菇形微柱阵列的热性能。将模型预测与实验结果进行了比较,并观察到良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信