Canonical models of toric hypersurfaces

IF 1.2 1区 数学 Q1 MATHEMATICS
V. Batyrev
{"title":"Canonical models of toric hypersurfaces","authors":"V. Batyrev","doi":"10.14231/ag-2023-013","DOIUrl":null,"url":null,"abstract":"Let $Z \\subset \\mathbb{T}_d$ be a non-degenerate hypersurface in $d$-dimensional torus $\\mathbb{T}_d \\cong (\\mathbb{C}^*)^d$ defined by a Laurent polynomial $f$ with a given $d$-dimensional Newton polytope $P$. It follows from a theorem of Ishii that $Z$ is birational to a smooth projective variety $X$ of Kodaira dimension $\\kappa \\geq 0$ if and only if the Fine interior $F(P)$ of $P$ is nonempty. We define a unique projective model $\\widetilde{Z}$ of $Z$ having at worst canonical singularities which allows us to obtain minimal models $\\widehat{Z}$ of $Z$ by crepant morphisms $\\widehat{Z} \\to \\widetilde{Z}$. Moreover, we show that $\\kappa = \\min \\{ d-1, \\dim F(P) \\}$ and that general fibers in the Iitaka fibration of the canonical model $\\widetilde{Z}$ are non-degenerate $(d-1-\\kappa)$-dimensional toric hypersurfaces of Kodaira dimension $0$. Using the rational polytope $F(P)$, we compute the stringy $E$-function of minimal models $\\widehat{Z}$ and obtain a combinatorial formula for their stringy Euler numbers.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2023-013","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

Let $Z \subset \mathbb{T}_d$ be a non-degenerate hypersurface in $d$-dimensional torus $\mathbb{T}_d \cong (\mathbb{C}^*)^d$ defined by a Laurent polynomial $f$ with a given $d$-dimensional Newton polytope $P$. It follows from a theorem of Ishii that $Z$ is birational to a smooth projective variety $X$ of Kodaira dimension $\kappa \geq 0$ if and only if the Fine interior $F(P)$ of $P$ is nonempty. We define a unique projective model $\widetilde{Z}$ of $Z$ having at worst canonical singularities which allows us to obtain minimal models $\widehat{Z}$ of $Z$ by crepant morphisms $\widehat{Z} \to \widetilde{Z}$. Moreover, we show that $\kappa = \min \{ d-1, \dim F(P) \}$ and that general fibers in the Iitaka fibration of the canonical model $\widetilde{Z}$ are non-degenerate $(d-1-\kappa)$-dimensional toric hypersurfaces of Kodaira dimension $0$. Using the rational polytope $F(P)$, we compute the stringy $E$-function of minimal models $\widehat{Z}$ and obtain a combinatorial formula for their stringy Euler numbers.
环面超曲面的正则模型
设$Z \subset \mathbb{T}_d$是由给定$d$维牛顿多面体$P$的劳伦多项式$f$定义的$d$维环面$\mathbb{T}_d \cong (\mathbb{C}^*)^d$中的非简并超曲面。由Ishii的定理可知$Z$与Kodaira维$\kappa \geq 0$的光滑投影变项$X$是分形的当且仅当$P$的Fine interior $F(P)$是非空的。我们定义了一个唯一的投影模型$\widetilde{Z}$ ($Z$),它在最坏的情况下具有规范奇点,这使得我们可以通过蠕变态射$\widehat{Z} \to \widetilde{Z}$获得$Z$的最小模型$\widehat{Z}$。此外,我们证明了$\kappa = \min \{ d-1, \dim F(P) \}$和典型模型$\widetilde{Z}$的Iitaka纤维中的一般纤维是非简并的$(d-1-\kappa)$ - Kodaira维的环面超曲面$0$。利用有理多面体$F(P)$,我们计算了最小模型$\widehat{Z}$的弦$E$ -函数,得到了它们的弦欧拉数的组合公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信