η-Ricci Solitons on 3-dimensional Trans-Sasakian Manifolds

IF 0.6 Q3 MATHEMATICS
S. Pahan
{"title":"η-Ricci Solitons on 3-dimensional Trans-Sasakian Manifolds","authors":"S. Pahan","doi":"10.4067/s0719-06462020000100023","DOIUrl":null,"url":null,"abstract":"In this paper, we study \\( \\eta \\)-Ricci solitons on 3-dimensional trans-Sasakian manifolds. Firstly we give conditions for the existence of these geometric structures and then observe that they provide examples of \\( \\eta \\)-Einstein manifolds. In the case of \\( \\phi \\)-Ricci symmetric trans-Sasakian manifolds, the η-Ricci soliton condition turns them to Einstein manifolds. Afterward, we study the implications in this geometric context of the important tensorial conditions \\( R \\cdot S = 0\\), \\(S \\cdot R = 0\\), \\(W_2\\cdot S = 0\\) and \\(S \\cdot W_2 = 0\\).","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462020000100023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we study \( \eta \)-Ricci solitons on 3-dimensional trans-Sasakian manifolds. Firstly we give conditions for the existence of these geometric structures and then observe that they provide examples of \( \eta \)-Einstein manifolds. In the case of \( \phi \)-Ricci symmetric trans-Sasakian manifolds, the η-Ricci soliton condition turns them to Einstein manifolds. Afterward, we study the implications in this geometric context of the important tensorial conditions \( R \cdot S = 0\), \(S \cdot R = 0\), \(W_2\cdot S = 0\) and \(S \cdot W_2 = 0\).
三维反sasaki流形上的η-Ricci孤子
本文研究了三维反sasakian流形上的\( \eta \) -Ricci孤子。我们首先给出了这些几何结构存在的条件,然后观察到它们提供了\( \eta \) -爱因斯坦流形的例子。在\( \phi \) -Ricci对称反sasaki流形的情况下,η-Ricci孤子条件将它们变成爱因斯坦流形。之后,我们研究了重要张量条件\( R \cdot S = 0\), \(S \cdot R = 0\), \(W_2\cdot S = 0\)和\(S \cdot W_2 = 0\)在这种几何背景下的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信