{"title":"Low regularity ill-posedness for elastic waves driven by shock formation","authors":"Xinliang An, Hao-Lei Chen, Silu Yin","doi":"10.1353/ajm.2023.a902956","DOIUrl":null,"url":null,"abstract":"abstract:In this paper, we construct counterexamples to the local existence of low-regularity solutions to elastic wave equations in three spatial dimensions (3D). Inspired by the recent works of Christodoulou, we generalize Lindblad's classic results on the scalar wave equation by showing that the Cauchy problem for 3D elastic waves, a physical system with multiple wave-speeds, are ill-posed in $H^3(\\Bbb{R}^3)$. We further prove that the ill-posedness is caused by instantaneous shock formation, which is characterized by the vanishing of the inverse foliation density. The main difficulties of the 3D case come from the multiple wave-speeds and its associated non-strict hyperbolicity. We obtain the desired results by designing and combining a geometric approach and an algebraic approach, equipped with detailed studies and calculations of the structures and coefficients of the corresponding non-strictly hyperbolic system. Moreover, the ill-posedness we depict also applies to 2D elastic waves, which corresponds to a strictly hyperbolic case.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a902956","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
abstract:In this paper, we construct counterexamples to the local existence of low-regularity solutions to elastic wave equations in three spatial dimensions (3D). Inspired by the recent works of Christodoulou, we generalize Lindblad's classic results on the scalar wave equation by showing that the Cauchy problem for 3D elastic waves, a physical system with multiple wave-speeds, are ill-posed in $H^3(\Bbb{R}^3)$. We further prove that the ill-posedness is caused by instantaneous shock formation, which is characterized by the vanishing of the inverse foliation density. The main difficulties of the 3D case come from the multiple wave-speeds and its associated non-strict hyperbolicity. We obtain the desired results by designing and combining a geometric approach and an algebraic approach, equipped with detailed studies and calculations of the structures and coefficients of the corresponding non-strictly hyperbolic system. Moreover, the ill-posedness we depict also applies to 2D elastic waves, which corresponds to a strictly hyperbolic case.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.