{"title":"Interpretable weather forecasting for worldwide stations with a unified deep model","authors":"Haixu Wu, Hang Zhou, Mingsheng Long, Jianmin Wang","doi":"10.1038/s42256-023-00667-9","DOIUrl":null,"url":null,"abstract":"Automatic weather stations are essential for fine-grained weather forecasting; they can be built almost anywhere around the world and are much cheaper than radars and satellites. However, these scattered stations only provide partial observations governed by the continuous space–time global weather system, thus introducing thorny challenges to worldwide forecasting. Here we present the Corrformer model with a novel multi-correlation mechanism, which unifies spatial cross-correlation and temporal auto-correlation into a learned multi-scale tree structure to capture worldwide spatiotemporal correlations. Corrformer reduces the canonical double quadratic complexity of spatiotemporal modelling to linear in spatial modelling and log-linear in temporal modelling, achieving collaborative forecasts for tens of thousands of stations within a unified deep model. Our model can generate interpretable predictions based on inferred propagation directions of weather processes, facilitating a fully data-driven artificial intelligence paradigm for discovering insights for meteorological science. Corrformer yields state-of-the-art forecasts on global, regional and citywide datasets with high confidence and provided skilful weather services for the 2022 Winter Olympics. Worldwide weather station forecasting is challenging because of high computational costs and the difficulty of modelling spatiotemporal correlations from partial observations. Wu et al. propose a transformer-based method that can reconstruct such complex correlations from scattered weather stations, leading to efficient and interpretable state-of-the-art forecasts.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"5 6","pages":"602-611"},"PeriodicalIF":18.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-023-00667-9","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Automatic weather stations are essential for fine-grained weather forecasting; they can be built almost anywhere around the world and are much cheaper than radars and satellites. However, these scattered stations only provide partial observations governed by the continuous space–time global weather system, thus introducing thorny challenges to worldwide forecasting. Here we present the Corrformer model with a novel multi-correlation mechanism, which unifies spatial cross-correlation and temporal auto-correlation into a learned multi-scale tree structure to capture worldwide spatiotemporal correlations. Corrformer reduces the canonical double quadratic complexity of spatiotemporal modelling to linear in spatial modelling and log-linear in temporal modelling, achieving collaborative forecasts for tens of thousands of stations within a unified deep model. Our model can generate interpretable predictions based on inferred propagation directions of weather processes, facilitating a fully data-driven artificial intelligence paradigm for discovering insights for meteorological science. Corrformer yields state-of-the-art forecasts on global, regional and citywide datasets with high confidence and provided skilful weather services for the 2022 Winter Olympics. Worldwide weather station forecasting is challenging because of high computational costs and the difficulty of modelling spatiotemporal correlations from partial observations. Wu et al. propose a transformer-based method that can reconstruct such complex correlations from scattered weather stations, leading to efficient and interpretable state-of-the-art forecasts.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.