{"title":"Machine learning approaches for the prediction of serious fluid leakage from hydrocarbon wells","authors":"Mehdi Rezvandehy, B. Mayer","doi":"10.1017/dce.2023.9","DOIUrl":null,"url":null,"abstract":"Abstract The exploitation of hydrocarbon reservoirs may potentially lead to contamination of soils, shallow water resources, and greenhouse gas emissions. Fluids such as methane or CO2 may in some cases migrate toward the groundwater zone and atmosphere through and along imperfectly sealed hydrocarbon wells. Field tests in hydrocarbon-producing regions are routinely conducted for detecting serious leakage to prevent environmental pollution. The challenge is that testing is costly, time-consuming, and sometimes labor-intensive. In this study, machine learning approaches were applied to predict serious leakage with uncertainty quantification for wells that have not been field tested in Alberta, Canada. An improved imputation technique was developed by Cholesky factorization of the covariance matrix between features, where missing data are imputed via conditioning of available values. The uncertainty in imputed values was quantified and incorporated into the final prediction to improve decision-making. Next, a wide range of predictive algorithms and various performance metrics were considered to achieve the most reliable classifier. However, a highly skewed distribution of field tests toward the negative class (nonserious leakage) forces predictive models to unrealistically underestimate the minority class (serious leakage). To address this issue, a combination of oversampling, undersampling, and ensemble learning was applied. By investigating all the models on never-before-seen data, an optimum classifier with minimal false negative prediction was determined. The developed methodology can be applied to identify the wells with the highest likelihood for serious fluid leakage within producing fields. This information is of key importance for optimizing field test operations to achieve economic and environmental benefits.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2023.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The exploitation of hydrocarbon reservoirs may potentially lead to contamination of soils, shallow water resources, and greenhouse gas emissions. Fluids such as methane or CO2 may in some cases migrate toward the groundwater zone and atmosphere through and along imperfectly sealed hydrocarbon wells. Field tests in hydrocarbon-producing regions are routinely conducted for detecting serious leakage to prevent environmental pollution. The challenge is that testing is costly, time-consuming, and sometimes labor-intensive. In this study, machine learning approaches were applied to predict serious leakage with uncertainty quantification for wells that have not been field tested in Alberta, Canada. An improved imputation technique was developed by Cholesky factorization of the covariance matrix between features, where missing data are imputed via conditioning of available values. The uncertainty in imputed values was quantified and incorporated into the final prediction to improve decision-making. Next, a wide range of predictive algorithms and various performance metrics were considered to achieve the most reliable classifier. However, a highly skewed distribution of field tests toward the negative class (nonserious leakage) forces predictive models to unrealistically underestimate the minority class (serious leakage). To address this issue, a combination of oversampling, undersampling, and ensemble learning was applied. By investigating all the models on never-before-seen data, an optimum classifier with minimal false negative prediction was determined. The developed methodology can be applied to identify the wells with the highest likelihood for serious fluid leakage within producing fields. This information is of key importance for optimizing field test operations to achieve economic and environmental benefits.