Large deviations of Schramm-Loewner evolutions: A survey

IF 1.3 Q2 STATISTICS & PROBABILITY
Probability Surveys Pub Date : 2021-02-13 DOI:10.1214/22-ps9
Yilin Wang
{"title":"Large deviations of Schramm-Loewner evolutions: A survey","authors":"Yilin Wang","doi":"10.1214/22-ps9","DOIUrl":null,"url":null,"abstract":"These notes survey the first results on large deviations of Schramm-Loewner evolutions (SLE) with emphasis on interrelations between rate functions and applications to complex analysis. More precisely, we describe the large deviations of SLE$_\\kappa$ when the $\\kappa$ parameter goes to zero in the chordal and multichordal case and to infinity in the radial case. The rate functions, namely Loewner and Loewner-Kufarev energies, are closely related to the Weil-Petersson class of quasicircles and real rational functions.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-ps9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 13

Abstract

These notes survey the first results on large deviations of Schramm-Loewner evolutions (SLE) with emphasis on interrelations between rate functions and applications to complex analysis. More precisely, we describe the large deviations of SLE$_\kappa$ when the $\kappa$ parameter goes to zero in the chordal and multichordal case and to infinity in the radial case. The rate functions, namely Loewner and Loewner-Kufarev energies, are closely related to the Weil-Petersson class of quasicircles and real rational functions.
Schramm-Loewner进化的大偏差:综述
这些注释调查了Schramm-Loewner进化(SLE)的大偏差的第一个结果,重点是速率函数之间的相互关系和在复杂分析中的应用。更准确地说,我们描述了当$\kappa$参数在弦和多弦情况下为零时,以及在径向情况下为无穷大时,SLE$_\kappa的大偏差。速率函数,即Loewner和Loewer-Kufarev能量,与拟圆的Weil-Petersson类和实有理函数密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信