{"title":"Luminescence Chronology of the Yellow River Terraces in the Heiyukou Area, China, and Its Implication for the Uplift Rate of the Ordos Plateau","authors":"Yand Yan, Jia-Fu Zhang, G. Hu, Liping Zhou","doi":"10.2478/geochr-2020-0008","DOIUrl":null,"url":null,"abstract":"Abstract The precise chronology of the fluvial terraces of the Yellow River in China is essential to understand its geomorphological evolution history. More terrace ages are needed for the correlation of the terraces along the river and the construction of the longitudinal profile. In this study, seven terraces (T1–T7) in the Heiyukou area of the Jinshaan Canyon of the river were identified and were sampled for optical dating. The reliability of the ages was evaluated on the bases of bleachability, comparison of optical ages on fine and coarse grains, stratigraphic consistency of OSL ages, age distribution and geomorphological setting. The results show that the paired T2 terrace was formed at 72 ± 3 ka, and the T4, T5 strath terraces were dated to 108 ± 4 and >141 ± 4 ka, respectively. The ages for the samples from T6 and T7 were significantly underestimated, and the ‘infinitely old’ pre-Quaternary Red-Clay sample on the T7 terrace was dated to 134 ± 6 ka. The long-term river incision rates were calculated to be <0.36, 0.34 and 0.18 mm/a for at least the past 141, 108 and 72 ka, respectively, which also reflect the uplift rates of the Ordos plateau. The implication for dating terrace deposits is that terraces should be systemically sampled and dated using both fine and coarse grain fractions. The reliability of the ages obtained for high terraces should be evaluated using a relative chronology of dated samples on a case-by-case basis, if no independent numerical age controls are available.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronometria","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2478/geochr-2020-0008","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract The precise chronology of the fluvial terraces of the Yellow River in China is essential to understand its geomorphological evolution history. More terrace ages are needed for the correlation of the terraces along the river and the construction of the longitudinal profile. In this study, seven terraces (T1–T7) in the Heiyukou area of the Jinshaan Canyon of the river were identified and were sampled for optical dating. The reliability of the ages was evaluated on the bases of bleachability, comparison of optical ages on fine and coarse grains, stratigraphic consistency of OSL ages, age distribution and geomorphological setting. The results show that the paired T2 terrace was formed at 72 ± 3 ka, and the T4, T5 strath terraces were dated to 108 ± 4 and >141 ± 4 ka, respectively. The ages for the samples from T6 and T7 were significantly underestimated, and the ‘infinitely old’ pre-Quaternary Red-Clay sample on the T7 terrace was dated to 134 ± 6 ka. The long-term river incision rates were calculated to be <0.36, 0.34 and 0.18 mm/a for at least the past 141, 108 and 72 ka, respectively, which also reflect the uplift rates of the Ordos plateau. The implication for dating terrace deposits is that terraces should be systemically sampled and dated using both fine and coarse grain fractions. The reliability of the ages obtained for high terraces should be evaluated using a relative chronology of dated samples on a case-by-case basis, if no independent numerical age controls are available.
期刊介绍:
Geochronometria is aimed at integrating scientists developing different methods of absolute chronology and using them in different fields of earth and other natural sciences and archaeology. The methods in use are e.g. radiocarbon, stable isotopes, isotopes of natural decay series, optically stimulated luminescence, thermoluminescence, EPR/ESR, dendrochronology, varve chronology. The journal publishes papers that are devoted to developing the dating methods as well as studies concentrating on their applications in geology, palaeoclimatology, palaeobiology, palaeohydrology, geocgraphy and archaeology etc.