Artificial intelligence and algorithmic decisions in fraud detection: An interpretive structural model

IF 1.8 Q3 PUBLIC ADMINISTRATION
Data & policy Pub Date : 2023-07-14 DOI:10.1017/dap.2023.22
E. Tan, Maxime Petit Jean, Anthony Simonofski, Thomas Tombal, Bjorn Kleizen, M. Sabbe, Lucas Bechoux, Pauline Willem
{"title":"Artificial intelligence and algorithmic decisions in fraud detection: An interpretive structural model","authors":"E. Tan, Maxime Petit Jean, Anthony Simonofski, Thomas Tombal, Bjorn Kleizen, M. Sabbe, Lucas Bechoux, Pauline Willem","doi":"10.1017/dap.2023.22","DOIUrl":null,"url":null,"abstract":"Abstract The use of artificial intelligence and algorithmic decision-making in public policy processes is influenced by a range of diverse drivers. This article provides a comprehensive view of 13 drivers and their interrelationships, identified through empirical findings from the taxation and social security domains in Belgium. These drivers are organized into five hierarchical layers that policy designers need to focus on when introducing advanced analytics in fraud detection: (a) trust layer, (b) interoperability layer, (c) perceived benefits layer, (d) data governance layer, and (e) digital governance layer. The layered approach enables a holistic view of assessing adoption challenges concerning new digital technologies. The research uses thematic analysis and interpretive structural modeling.","PeriodicalId":93427,"journal":{"name":"Data & policy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dap.2023.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC ADMINISTRATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The use of artificial intelligence and algorithmic decision-making in public policy processes is influenced by a range of diverse drivers. This article provides a comprehensive view of 13 drivers and their interrelationships, identified through empirical findings from the taxation and social security domains in Belgium. These drivers are organized into five hierarchical layers that policy designers need to focus on when introducing advanced analytics in fraud detection: (a) trust layer, (b) interoperability layer, (c) perceived benefits layer, (d) data governance layer, and (e) digital governance layer. The layered approach enables a holistic view of assessing adoption challenges concerning new digital technologies. The research uses thematic analysis and interpretive structural modeling.
欺诈检测中的人工智能和算法决策:一个解释性结构模型
摘要人工智能和算法决策在公共政策过程中的使用受到一系列不同驱动因素的影响。本文通过比利时税收和社会保障领域的实证结果,对13个驱动因素及其相互关系进行了全面的分析。这些驱动因素分为五个层次,政策设计者在欺诈检测中引入高级分析时需要重点关注:(a)信任层、(b)互操作性层、(c)感知利益层、(d)数据治理层和(e)数字治理层。分层方法能够全面评估新数字技术的采用挑战。该研究采用了主题分析和解释性结构建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信