The Mumford�Tate conjecture for products of abelian varieties

IF 1.2 1区 数学 Q1 MATHEMATICS
J. Commelin
{"title":"The Mumford�Tate conjecture for products of abelian varieties","authors":"J. Commelin","doi":"10.14231/ag-2019-028","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth projective variety over a finitely generated field $K$ of characteristic~$0$ and fix an embedding $K \\subset \\mathbb{C}$. The Mumford--Tate conjecture is a precise way of saying that certain extra structure on the $\\ell$-adic \\'etale cohomology groups of~$X$ (namely, a Galois representation) and certain extra structure on the singular cohomology groups of~$X$ (namely, a Hodge structure) convey the same information. \nThe main result of this paper says that if $A_1$ and~$A_2$ are abelian varieties (or abelian motives) over~$K$, and the Mumford--Tate conjecture holds for both~$A_1$ and~$A_2$, then it holds for $A_1 \\times A_2$. These results do not depend on the embedding $K \\subset \\CC$.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2019-028","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

Let $X$ be a smooth projective variety over a finitely generated field $K$ of characteristic~$0$ and fix an embedding $K \subset \mathbb{C}$. The Mumford--Tate conjecture is a precise way of saying that certain extra structure on the $\ell$-adic \'etale cohomology groups of~$X$ (namely, a Galois representation) and certain extra structure on the singular cohomology groups of~$X$ (namely, a Hodge structure) convey the same information. The main result of this paper says that if $A_1$ and~$A_2$ are abelian varieties (or abelian motives) over~$K$, and the Mumford--Tate conjecture holds for both~$A_1$ and~$A_2$, then it holds for $A_1 \times A_2$. These results do not depend on the embedding $K \subset \CC$.
关于阿贝尔变积的Mumford - Tate猜想
设$X$是特征为~$0$的有限生成域$K$上的光滑射影变,并固定一个嵌入$K \子集\mathbb{C}$。芒福德-泰特猜想是一个精确的说法,某些额外的结构\ l形进\美元的层上同调群~ X美元(也就是说,伽罗瓦表示)和某些额外的结构奇异上同调群~ X美元霍奇(即结构)传达同样的信息。本文的主要结果表明,如果$A_1$和~$A_2$是~$K$上的阿贝尔变量(或阿贝尔动机),并且对于~$A_1$和~$A_2$ Mumford—Tate猜想成立,那么对于$A_1 \乘以A_2$也成立。这些结果不依赖于嵌入$K \子集\CC$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信