The stable cohomology of moduli spaces of sheaves on surfaces

IF 1.3 1区 数学 Q1 MATHEMATICS
Izzet Coskun, Matthew Woolf
{"title":"The stable cohomology of moduli spaces of sheaves on surfaces","authors":"Izzet Coskun, Matthew Woolf","doi":"10.4310/jdg/1659987893","DOIUrl":null,"url":null,"abstract":"Let X be a smooth, irreducible, complex projective surface, H a polarization on X. Let γ = (r, c,∆) be a Chern character. In this paper, we study the cohomology of moduli spaces of Gieseker semistable sheaves MX,H(γ). When the rank r = 1, the Betti numbers were computed by Göttsche. We conjecture that if we fix the rank r ≥ 1 and the first Chern class c, then the Betti numbers (and more generally the Hodge numbers) of MX,H(r, c,∆) stabilize as the discriminant ∆ tends to infinity and that the stable Betti numbers are independent of r and c. In particular, the conjectural stable Betti numbers are determined by Göttsche’s calculation. We present evidence for the conjecture. We analyze the validity of the conjecture under blowup and wall-crossing. We prove that when X is a rational surface and KX · H < 0, then the classes [MX,H(γ)] stabilize in an appropriate completion of the Grothendieck ring of varieties as ∆ tends to ∞. Consequently, the virtual Poincaré and Hodge polynomials stabilize to the conjectural value. In particular, the conjecture holds when X is a rational surface, H · KX < 0 and there are no strictly semistable objects in MX,H(γ).","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1659987893","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

Let X be a smooth, irreducible, complex projective surface, H a polarization on X. Let γ = (r, c,∆) be a Chern character. In this paper, we study the cohomology of moduli spaces of Gieseker semistable sheaves MX,H(γ). When the rank r = 1, the Betti numbers were computed by Göttsche. We conjecture that if we fix the rank r ≥ 1 and the first Chern class c, then the Betti numbers (and more generally the Hodge numbers) of MX,H(r, c,∆) stabilize as the discriminant ∆ tends to infinity and that the stable Betti numbers are independent of r and c. In particular, the conjectural stable Betti numbers are determined by Göttsche’s calculation. We present evidence for the conjecture. We analyze the validity of the conjecture under blowup and wall-crossing. We prove that when X is a rational surface and KX · H < 0, then the classes [MX,H(γ)] stabilize in an appropriate completion of the Grothendieck ring of varieties as ∆ tends to ∞. Consequently, the virtual Poincaré and Hodge polynomials stabilize to the conjectural value. In particular, the conjecture holds when X is a rational surface, H · KX < 0 and there are no strictly semistable objects in MX,H(γ).
曲面上轮轴模空间的稳定上同调
设X是光滑的、不可约的复投影曲面,H是X上的偏振。设γ=(r,c,∆)是Chern特征。本文研究了Gieseker半稳定槽轮MX,H(γ)模空间的上同调。当秩r=1时,Betti数由Göttsche计算。我们猜想,如果我们固定秩r≥1和第一个Chern类c,那么MX,H(r,c,∆。我们为这个猜想提供了证据。我们分析了该猜想在爆破和穿墙情况下的有效性。我们证明了当X是有理曲面并且KX·H<0时,当∆趋于∞时,类[MX,H(γ)]稳定在品种的Grothendieck环的适当完备中。因此,虚拟庞加莱和霍奇多项式稳定在推测值。特别地,当X是有理曲面,H·KX<0并且MX中不存在严格半稳定对象时,该猜想成立,H(γ)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信