WDVV-type relations for Welschinger invariants: Applications

IF 0.5 4区 数学 Q3 MATHEMATICS
Xujia Chen, A. Zinger
{"title":"WDVV-type relations for Welschinger invariants: Applications","authors":"Xujia Chen, A. Zinger","doi":"10.1215/21562261-2021-0005","DOIUrl":null,"url":null,"abstract":"We first recall Solomon's relations for Welschinger's invariants counting real curves in real symplectic fourfolds, announced in \\cite{Jake2} and established in \\cite{RealWDVV}, and the WDVV-style relations for Welschinger's invariants counting real curves in real symplectic sixfolds with some symmetry established in \\cite{RealWDVV3}. We then explicitly demonstrate that in some important cases (projective spaces with standard conjugations, real blowups of the projective plane, and two- and three-fold products of the one-dimensional projective space with two involutions each), these relations provide complete recursions determining all Welschinger's invariants from basic input. We include extensive tables of Welschinger's invariants in low degrees obtained from these recursions with {\\it Mathematica}. These invariants provide lower bounds for counts of real rational curves, including with curve insertions in smooth algebraic threefolds.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2021-0005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We first recall Solomon's relations for Welschinger's invariants counting real curves in real symplectic fourfolds, announced in \cite{Jake2} and established in \cite{RealWDVV}, and the WDVV-style relations for Welschinger's invariants counting real curves in real symplectic sixfolds with some symmetry established in \cite{RealWDVV3}. We then explicitly demonstrate that in some important cases (projective spaces with standard conjugations, real blowups of the projective plane, and two- and three-fold products of the one-dimensional projective space with two involutions each), these relations provide complete recursions determining all Welschinger's invariants from basic input. We include extensive tables of Welschinger's invariants in low degrees obtained from these recursions with {\it Mathematica}. These invariants provide lower bounds for counts of real rational curves, including with curve insertions in smooth algebraic threefolds.
Welschinger不变量的WDVV型关系及其应用
我们首先回顾了在\cite{Jake2}中宣布并在\cite{RealWDVV}中建立的计算实辛四重曲线的Welschinger不变量的Solomon关系式,以及在\cite{RealWDVV3}中建立的具有一定对称性的计算实辛六重曲线的Welschinger不变量的wdvv式关系式。然后,我们明确地证明了在一些重要的情况下(具有标准共轭的射影空间,射影平面的实膨胀,以及一维射影空间的两倍和三倍乘积,每个都有两个对合),这些关系提供了从基本输入确定所有Welschinger不变量的完全递推。我们在{\itMathematica}中包含了由这些递归得到的Welschinger低阶不变量的扩展表。这些不变量提供了实有理曲线计数的下界,包括光滑代数三倍曲线插入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信