Maximum Oriented Forcing Number for Complete Graphs

Q4 Mathematics
Y. Caro, R. Pepper
{"title":"Maximum Oriented Forcing Number for Complete Graphs","authors":"Y. Caro, R. Pepper","doi":"10.20429/TAG.2019.060106","DOIUrl":null,"url":null,"abstract":"The maximum oriented $k$-forcing number of a simple graph $G$, written $\\MOF_k(G)$, is the maximum directed $k$-forcing number among all orientations of $G$. This invariant was recently introduced by Caro, Davila and Pepper in [CaroDavilaPepper], and in the current paper we study the special case where $G$ is the complete graph with order $n$, denoted $K_n$. While $\\MOF_k(G)$ is an invariant for the underlying simple graph $G$, $\\MOF_k(K_n)$ can also be interpreted as an interesting property for tournaments. Our main results further focus on the case when $k=1$. These include a lower bound on $\\MOF(K_n)$ of roughly $\\frac{3}{4}n$, and for $n\\ge 2$, a lower bound of $n - \\frac{2n}{\\log_2(n)}$. Along the way, we also consider various lower bounds on the maximum oriented $k$-forcing number for the closely related complete $q$-partite graphs.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/TAG.2019.060106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

The maximum oriented $k$-forcing number of a simple graph $G$, written $\MOF_k(G)$, is the maximum directed $k$-forcing number among all orientations of $G$. This invariant was recently introduced by Caro, Davila and Pepper in [CaroDavilaPepper], and in the current paper we study the special case where $G$ is the complete graph with order $n$, denoted $K_n$. While $\MOF_k(G)$ is an invariant for the underlying simple graph $G$, $\MOF_k(K_n)$ can also be interpreted as an interesting property for tournaments. Our main results further focus on the case when $k=1$. These include a lower bound on $\MOF(K_n)$ of roughly $\frac{3}{4}n$, and for $n\ge 2$, a lower bound of $n - \frac{2n}{\log_2(n)}$. Along the way, we also consider various lower bounds on the maximum oriented $k$-forcing number for the closely related complete $q$-partite graphs.
完全图的最大定向强迫数
写为$\MOF_k(G)$的简单图$G$的最大有向$k$强制数是$G$所有方向中的最大有向$k$强迫数。Caro、Davila和Pepper最近在[CaroDavilaPepper]中引入了这个不变量,在本文中,我们研究了$G$是阶为$n$的完全图的特殊情况,表示为$K_n$。虽然$\MOF_k(G)$是底层简单图$G$的不变量,但$\MOF.k(k_n)$也可以被解释为锦标赛的一个有趣性质。我们的主要结果进一步集中在$k=1$的情况下。其中包括$\MOF(K_n)$的下界,约为$\frac{3}{4}n$,并且对于$n\ge 2$,$n-\frac{2n}{\log_2(n)}$的下界。在此过程中,我们还考虑了密切相关的完全$q$-partite图的最大定向$k$-forceng数的各种下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信