Modeling the Deformation of Shear Thinning Droplets Suspended in a Newtonian Fluid

IF 5.8 4区 工程技术 Q1 MECHANICS
Abdulwahab S. Almusallam, Isameldeen E. Daffallah, L. Benyahia
{"title":"Modeling the Deformation of Shear Thinning Droplets Suspended in a Newtonian Fluid","authors":"Abdulwahab S. Almusallam, Isameldeen E. Daffallah, L. Benyahia","doi":"10.1515/arh-2020-0113","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we carried out numerical modeling of the large deformation of a shear thinning droplet suspended in a Newtonian matrix using the constrained volume model. The adopted approach was to consider making incremental corrections to the evolution of the droplet anisotropy equation in order to capture the experimental behavior of a shear thinning droplet when subjected to deformation due to imposed flow. The constrained volume model was modified by using different models to describe the viscosity of droplet phase: the Bautista et al. model, the Carreau-Yasuda model and the Power-law model. We found that by combining the constrained volume model with a simple shear thinning viscosity model we were able to describe the available experimental data for large deformation of a shear thinning droplet suspended in a Newtonian matrix. Moreover, we developed an equation approximating flow strength during droplet retraction, and we found that the model can accurately describe the experimental data of the retraction of a shear thinning droplet.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":"30 1","pages":"151 - 165"},"PeriodicalIF":5.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/arh-2020-0113","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/arh-2020-0113","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this work, we carried out numerical modeling of the large deformation of a shear thinning droplet suspended in a Newtonian matrix using the constrained volume model. The adopted approach was to consider making incremental corrections to the evolution of the droplet anisotropy equation in order to capture the experimental behavior of a shear thinning droplet when subjected to deformation due to imposed flow. The constrained volume model was modified by using different models to describe the viscosity of droplet phase: the Bautista et al. model, the Carreau-Yasuda model and the Power-law model. We found that by combining the constrained volume model with a simple shear thinning viscosity model we were able to describe the available experimental data for large deformation of a shear thinning droplet suspended in a Newtonian matrix. Moreover, we developed an equation approximating flow strength during droplet retraction, and we found that the model can accurately describe the experimental data of the retraction of a shear thinning droplet.
牛顿流体中剪切减薄液滴的变形建模
摘要在这项工作中,我们使用约束体积模型对悬浮在牛顿矩阵中的剪切变薄液滴的大变形进行了数值模拟。所采用的方法是考虑对液滴各向异性方程的演变进行增量校正,以捕捉剪切减薄液滴在因施加的流动而变形时的实验行为。通过使用不同的模型来描述液滴相的粘度,对约束体积模型进行了修改:Bautista等人的模型、Carreau Yasuda模型和幂律模型。我们发现,通过将约束体积模型与简单的剪切减薄粘度模型相结合,我们能够描述悬浮在牛顿基质中的剪切减稀液滴的大变形的可用实验数据。此外,我们建立了一个近似液滴回缩过程中流动强度的方程,我们发现该模型可以准确地描述剪切减薄液滴回撤的实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Rheology
Applied Rheology 物理-力学
CiteScore
3.00
自引率
5.60%
发文量
7
审稿时长
>12 weeks
期刊介绍: Applied Rheology is a peer-reviewed, open access, electronic journal devoted to the publication in the field of applied rheology. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信