Existence of weak solutions to multiphase Cahn–Hilliard–Darcy and Cahn–Hilliard–Brinkman models for stratified tumor growth with chemotaxis and general source terms
{"title":"Existence of weak solutions to multiphase Cahn–Hilliard–Darcy and Cahn–Hilliard–Brinkman models for stratified tumor growth with chemotaxis and general source terms","authors":"P. Knopf, A. Signori","doi":"10.1080/03605302.2021.1966803","DOIUrl":null,"url":null,"abstract":"Abstract We investigate a multiphase Cahn–Hilliard model for tumor growth with general source terms. The multiphase approach allows us to consider multiple cell types and multiple chemical species (oxygen and/or nutrients) that are consumed by the tumor. Compared to classical two-phase tumor growth models, the multiphase model can be used to describe a stratified tumor exhibiting several layers of tissue (e.g., proliferating, quiescent and necrotic tissue) more precisely. Our model consists of a convective Cahn–Hilliard type equation to describe the tumor evolution, a velocity equation for the associated volume-averaged velocity field, and a convective reaction-diffusion type equation to describe the density of the chemical species. The velocity equation is either represented by Darcy’s law or by the Brinkman equation. We first construct a global weak solution of the multiphase Cahn–Hilliard–Brinkman model. After that, we show that such weak solutions of this system converge to a weak solution of the multiphase Cahn–Hilliard–Darcy system as the viscosities tend to zero in some suitable sense. This means that the existence of a global weak solution to the Cahn–Hilliard–Darcy system is also established.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"47 1","pages":"233 - 278"},"PeriodicalIF":2.1000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2021.1966803","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12
Abstract
Abstract We investigate a multiphase Cahn–Hilliard model for tumor growth with general source terms. The multiphase approach allows us to consider multiple cell types and multiple chemical species (oxygen and/or nutrients) that are consumed by the tumor. Compared to classical two-phase tumor growth models, the multiphase model can be used to describe a stratified tumor exhibiting several layers of tissue (e.g., proliferating, quiescent and necrotic tissue) more precisely. Our model consists of a convective Cahn–Hilliard type equation to describe the tumor evolution, a velocity equation for the associated volume-averaged velocity field, and a convective reaction-diffusion type equation to describe the density of the chemical species. The velocity equation is either represented by Darcy’s law or by the Brinkman equation. We first construct a global weak solution of the multiphase Cahn–Hilliard–Brinkman model. After that, we show that such weak solutions of this system converge to a weak solution of the multiphase Cahn–Hilliard–Darcy system as the viscosities tend to zero in some suitable sense. This means that the existence of a global weak solution to the Cahn–Hilliard–Darcy system is also established.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.