{"title":"A finite element scheme for the numerical solution of the Navier–Stokes/Biot coupled problem","authors":"A. Lozovskiy, M. Olshanskii, Y. Vassilevski","doi":"10.1515/rnam-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract A finite element method for a monolithic quasi-Lagrangian formulation of a fluid–porous structure interaction problem with a corrected balance of stresses on the fluid–structure interface is considered. Deformations of the elastic medium are not necessarily small and are modelled using Saint Venant–Kirchhoff (SVK) constitutive relation. The stability of the method is proved in a form of energy bound for the finite element solution.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract A finite element method for a monolithic quasi-Lagrangian formulation of a fluid–porous structure interaction problem with a corrected balance of stresses on the fluid–structure interface is considered. Deformations of the elastic medium are not necessarily small and are modelled using Saint Venant–Kirchhoff (SVK) constitutive relation. The stability of the method is proved in a form of energy bound for the finite element solution.
期刊介绍:
The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest.
Topics:
-numerical analysis-
numerical linear algebra-
finite element methods for PDEs-
iterative methods-
Monte-Carlo methods-
mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.