A finite element scheme for the numerical solution of the Navier–Stokes/Biot coupled problem

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
A. Lozovskiy, M. Olshanskii, Y. Vassilevski
{"title":"A finite element scheme for the numerical solution of the Navier–Stokes/Biot coupled problem","authors":"A. Lozovskiy, M. Olshanskii, Y. Vassilevski","doi":"10.1515/rnam-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract A finite element method for a monolithic quasi-Lagrangian formulation of a fluid–porous structure interaction problem with a corrected balance of stresses on the fluid–structure interface is considered. Deformations of the elastic medium are not necessarily small and are modelled using Saint Venant–Kirchhoff (SVK) constitutive relation. The stability of the method is proved in a form of energy bound for the finite element solution.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract A finite element method for a monolithic quasi-Lagrangian formulation of a fluid–porous structure interaction problem with a corrected balance of stresses on the fluid–structure interface is considered. Deformations of the elastic medium are not necessarily small and are modelled using Saint Venant–Kirchhoff (SVK) constitutive relation. The stability of the method is proved in a form of energy bound for the finite element solution.
Navier-Stokes /Biot耦合问题数值解的有限元格式
摘要考虑了流体-多孔结构相互作用问题的整体拟拉格朗日公式的有限元方法,该问题在流体-结构界面上具有校正的应力平衡。弹性介质的变形不一定很小,而是使用Saint-Venant–Kirchhoff(SVK)本构关系进行建模。用有限元解的能量界形式证明了该方法的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信