A lift of West’s stack-sorting map to partition diagrams

Pub Date : 2023-01-03 DOI:10.2140/pjm.2023.324.227
John M. Campbell
{"title":"A lift of West’s stack-sorting map to partition\ndiagrams","authors":"John M. Campbell","doi":"10.2140/pjm.2023.324.227","DOIUrl":null,"url":null,"abstract":"We introduce a lifting of West's stack-sorting map $s$ to partition diagrams, which are combinatorial objects indexing bases of partition algebras. Our lifting $\\mathscr{S}$ of $s$ is such that $\\mathscr{S}$ behaves in the same way as $s$ when restricted to diagram basis elements in the order-$n$ symmetric group algebra as a diagram subalgebra of the partition algebra $\\mathscr{P}_{n}^{\\xi}$. We then introduce a lifting of the notion of $1$-stack-sortability, using our lifting of $s$. By direct analogy with Knuth's famous result that a permutation is $1$-stack-sortable if and only if it avoids the pattern $231$, we prove a related pattern-avoidance property for partition diagrams, as opposed to permutations, according to what we refer to as stretch-stack-sortability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.324.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a lifting of West's stack-sorting map $s$ to partition diagrams, which are combinatorial objects indexing bases of partition algebras. Our lifting $\mathscr{S}$ of $s$ is such that $\mathscr{S}$ behaves in the same way as $s$ when restricted to diagram basis elements in the order-$n$ symmetric group algebra as a diagram subalgebra of the partition algebra $\mathscr{P}_{n}^{\xi}$. We then introduce a lifting of the notion of $1$-stack-sortability, using our lifting of $s$. By direct analogy with Knuth's famous result that a permutation is $1$-stack-sortable if and only if it avoids the pattern $231$, we prove a related pattern-avoidance property for partition diagrams, as opposed to permutations, according to what we refer to as stretch-stack-sortability.
分享
查看原文
将West的堆栈排序图提升为分区图
我们将West的堆栈排序映射$s$提升到分区图,分区图是分区代数的组合对象索引基。我们将$ $ S $的$\mathscr{S}$提升,使得$ $\mathscr{S}$的行为与$ $ S $在作为分区代数$ $\mathscr{P}_{n}^{\xi}$的图子代数的序-$n$对称群代数中的图基元素的行为相同。然后我们引入$1$-堆栈可排序性的提升概念,使用我们的$s$提升。通过直接类比Knuth的著名结果,即排列是$1$-堆栈可排序的,当且仅当它避免了模式$231$,我们证明了与排列相反的分区图的相关模式避免性质,根据我们所说的拉伸堆栈可排序性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信