Face Mask Wearing Detection Using Support Vector Machine (SVM)

Muhammad Nur Yasir Utomo, Fajrin Violita
{"title":"Face Mask Wearing Detection Using Support Vector Machine (SVM)","authors":"Muhammad Nur Yasir Utomo, Fajrin Violita","doi":"10.14421/ijid.2021.3038","DOIUrl":null,"url":null,"abstract":"As an effort to prevent the spread of the Covid-19, various countries have implemented health protocol policies such as work-from-home, social distancing, and face mask-wearing in public places. However, monitoring compliance with the policy is still difficult, especially for the face mask policy. It is still managed by humans and is costly. Thus, this research proposes a face mask-wearing detection using a soft-margin Support Vector Machine (SVM). There are three main stages: feature selection and preprocessing, model training, and evaluation. During the first stage, the dataset of 3833 images (1915 images with face masks and 1918 images without face masks) was prepared to be used in the training stage. The training stage was conducted using SVM added with the soft-margin objective to overcome images that could not be separated linearly. At the final stage, evaluation was conducted using a confusion matrix with 10 folds cross-validation. Based on the experiments, the proposed method shows a performance accuracy of 91.7%, a precision of 90.3%, recall of 93.5%, and an F-measure of 91.8%. Our method also worked fast, taking only 0.025 seconds to process a new image. It is 7.12 times faster than Deep Learning which requires 0.18 seconds for one classification.","PeriodicalId":33558,"journal":{"name":"IJID International Journal on Informatics for Development","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJID International Journal on Informatics for Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/ijid.2021.3038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

As an effort to prevent the spread of the Covid-19, various countries have implemented health protocol policies such as work-from-home, social distancing, and face mask-wearing in public places. However, monitoring compliance with the policy is still difficult, especially for the face mask policy. It is still managed by humans and is costly. Thus, this research proposes a face mask-wearing detection using a soft-margin Support Vector Machine (SVM). There are three main stages: feature selection and preprocessing, model training, and evaluation. During the first stage, the dataset of 3833 images (1915 images with face masks and 1918 images without face masks) was prepared to be used in the training stage. The training stage was conducted using SVM added with the soft-margin objective to overcome images that could not be separated linearly. At the final stage, evaluation was conducted using a confusion matrix with 10 folds cross-validation. Based on the experiments, the proposed method shows a performance accuracy of 91.7%, a precision of 90.3%, recall of 93.5%, and an F-measure of 91.8%. Our method also worked fast, taking only 0.025 seconds to process a new image. It is 7.12 times faster than Deep Learning which requires 0.18 seconds for one classification.
基于支持向量机的口罩佩戴检测
为防止新冠肺炎疫情扩散,各国纷纷实施居家办公、保持社交距离、在公共场所佩戴口罩等卫生协议政策。然而,监测政策的遵守情况仍然很困难,特别是对于口罩政策。它仍然由人类管理,而且成本很高。因此,本研究提出了一种基于软边界支持向量机(SVM)的口罩检测方法。主要有三个阶段:特征选择和预处理、模型训练和评估。在第一阶段,准备3833张图像的数据集(1915张带口罩的图像和1918张不带口罩的图像)用于训练阶段。训练阶段采用支持向量机加软边界目标克服不能线性分离的图像。在最后阶段,使用混淆矩阵进行评估,并进行10倍交叉验证。实验结果表明,该方法的准确率为91.7%,精密度为90.3%,召回率为93.5%,F-measure为91.8%。我们的方法也很快,处理一张新图像只需要0.025秒。它比深度学习快7.12倍,深度学习需要0.18秒进行一次分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信