D. Ratha, D. Mandal, Vineet Kumar, H. Mcnairn, A. Bhattacharya, A. Frery
{"title":"A Generalized Volume Scattering Model-Based Vegetation Index From Polarimetric SAR Data","authors":"D. Ratha, D. Mandal, Vineet Kumar, H. Mcnairn, A. Bhattacharya, A. Frery","doi":"10.1109/LGRS.2019.2907703","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a novel vegetation index from polarimetric synthetic-aperture radar (PolSAR) data using the generalized volume scattering model. The geodesic distance between two Kennaugh matrices projected on a unit sphere proposed by Ratha et al. is used in this letter. This distance is utilized to compute a similarity measure between the observed Kennaugh matrix and generalized volume scattering models. A factor is estimated corresponding to the ratio of the minimum to the maximum geodesic distances between the observed Kennaugh matrix and the set of elementary targets: trihedral, cylinder, dihedral, and narrow dihedral. This factor is then scaled and multiplied with the similarity measure to obtain the novel vegetation index. The proposed vegetation index is compared with the radar vegetation index (RVI) proposed by Kim and van Zyl. A time series of RADARSAT-2 data acquired during the Soil Moisture Active Passive Validation Experiment 2016 (SMAPVEX16-MB) campaign in Manitoba, Canada, is used to assessing the proposed RVI.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"16 1","pages":"1791-1795"},"PeriodicalIF":4.0000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2019.2907703","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2019.2907703","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 30
Abstract
In this letter, we propose a novel vegetation index from polarimetric synthetic-aperture radar (PolSAR) data using the generalized volume scattering model. The geodesic distance between two Kennaugh matrices projected on a unit sphere proposed by Ratha et al. is used in this letter. This distance is utilized to compute a similarity measure between the observed Kennaugh matrix and generalized volume scattering models. A factor is estimated corresponding to the ratio of the minimum to the maximum geodesic distances between the observed Kennaugh matrix and the set of elementary targets: trihedral, cylinder, dihedral, and narrow dihedral. This factor is then scaled and multiplied with the similarity measure to obtain the novel vegetation index. The proposed vegetation index is compared with the radar vegetation index (RVI) proposed by Kim and van Zyl. A time series of RADARSAT-2 data acquired during the Soil Moisture Active Passive Validation Experiment 2016 (SMAPVEX16-MB) campaign in Manitoba, Canada, is used to assessing the proposed RVI.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.