{"title":"Adelic geometry on arithmetic surfaces, I: Idelic and adelic interpretation of the Deligne pairing","authors":"Paolo Dolce","doi":"10.1215/21562261-2022-0009","DOIUrl":null,"url":null,"abstract":"For an arithmetic surface $X\\to B=\\operatorname{Spec} O_K$ the Deligne pairing $\\left<\\,,\\,\\right>\\colon \\operatorname{Pic}(X) \\times \\operatorname{Pic}(X) \\to \\operatorname{Pic}(B)$ gives the\"schematic contribution\"to the Arakelov intersection number. We present an idelic and adelic interpretation of the Deligne pairing; this is the first crucial step for a full idelic and adelic interpretation of the Arakelov intersection number. For the idelic approach we show that the Deligne pairing can be lifted to a pairing $\\left<\\,,\\,\\right>_i:\\ker(d^1_\\times)\\times \\ker(d^1_\\times)\\to\\operatorname{Pic}(B) $, where $\\ker(d^1_\\times)$ is an important subspace of the two dimensional idelic group $\\mathbf A_X^\\times$. On the other hand, the argument for the adelic interpretation is entirely cohomological.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
For an arithmetic surface $X\to B=\operatorname{Spec} O_K$ the Deligne pairing $\left<\,,\,\right>\colon \operatorname{Pic}(X) \times \operatorname{Pic}(X) \to \operatorname{Pic}(B)$ gives the"schematic contribution"to the Arakelov intersection number. We present an idelic and adelic interpretation of the Deligne pairing; this is the first crucial step for a full idelic and adelic interpretation of the Arakelov intersection number. For the idelic approach we show that the Deligne pairing can be lifted to a pairing $\left<\,,\,\right>_i:\ker(d^1_\times)\times \ker(d^1_\times)\to\operatorname{Pic}(B) $, where $\ker(d^1_\times)$ is an important subspace of the two dimensional idelic group $\mathbf A_X^\times$. On the other hand, the argument for the adelic interpretation is entirely cohomological.
期刊介绍:
The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.